用户名: 密码: 验证码:
砂-凹凸棒土竖向隔离墙材料的压缩及渗透特性试验研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Compressibility and hydraulic conductivity of sand-attapulgite cut-off wall backfills
  • 作者:Wen-bing ; ZHANG ; Wen-bo ; RAO ; Lei ; LI ; Ye ; LIU ; Shuai ; WANG ; Ke ; JIN ; Fang-wen ; ZHENG
  • 英文作者:Wen-bing ZHANG;Wen-bo RAO;Lei LI;Ye LIU;Shuai WANG;Ke JIN;Fang-wen ZHENG;Institute of Isotope Hydrology, College of Earth Sciences and Engineering, Hohai University;College of Resources and Environment, Henan Agricultural University;
  • 关键词:凹凸棒土 ; 砂-凹凸棒土回填料 ; 隔离墙 ; 压缩性 ; 渗透性
  • 英文关键词:Attapulgite;;Sand-attapulgite backfill;;Cut-off wall;;Compressibility;;Hydraulic conductivity
  • 中文刊名:Journal of Zhejiang University-Science A(Applied Physics & Engineering)
  • 英文刊名:浙江大学学报A辑(应用物理与工程)(英文版)
  • 机构:Institute of Isotope Hydrology, College of Earth Sciences and Engineering, Hohai University;College of Resources and Environment, Henan Agricultural University;
  • 出版日期:2019-03-03
  • 出版单位:Journal of Zhejiang University-Science A(Applied Physics & Engineering)
  • 年:2019
  • 期:03
  • 基金:Project supported by the National Natural Science Foundation of China(No.41273015);; the Fundamental Research Funds for the Central Universities(No.2017B19614);China
  • 语种:英文;
  • 页:60-70
  • 页数:11
  • CN:33-1236/O4
  • ISSN:1673-565X
  • 分类号:TU43;X705
摘要
目的:压缩性和渗透性是垃圾填埋场竖向隔离墙材料的2个重要指标。本文旨在探讨不同凹凸棒土添加量对砂-凹凸棒土隔离墙材料压缩性和渗透性的影响,并在Kozeny-Carman方程的框架下建立经验公式来预测砂-凹凸棒土隔离墙材料的渗透系数。创新点:1.系统全面地研究了不同凹凸棒土添加量对砂-凹凸棒土隔离墙材料压缩性和渗透性的影响;2.建立经验公式,预测砂-凹凸棒土隔离墙材料的渗透系数。方法:1.通过固结试验和刚性壁渗透试验,得出不同凹凸棒土添加量对砂-凹凸棒土隔离墙材料压缩性和渗透性的影响(图3和4,表1);2.通过公式推导,建立经验公式来预测砂-凹凸棒土隔离墙材料的渗透系数(公式(3)和(4))。结论:1.压缩指数(Cc)和回弹指数(Cs)均随回填料中凹凸棒土含量(Ap)的增加而增大,且Cc和Cs与Ap均有很好的线性关系:Cc=0.0062Ap+0.0161(r2=0.9914),Cs=0.0009Ap-0.0058(r2=0.9888)。2.用Casagrande和Taylor方法计算的固结系数(Cv)值均随回填料中凹凸棒土含量的增加而降低。3.利用太沙基固结理论计算的回填料渗透系数(ktheory)随回填料中凹凸棒土含量的增加而降低;在有效固结压力σ′<100 k Pa的情况下,只有凹凸棒土含量Ap≥30%,ktheory才会低于10-9 m/s;用刚性壁渗透试验测得的渗透系数kf与ktheory有相同的变化特征。4.基于试验数据提出了2种预测砂-凹凸棒土回填料渗透系数的方法,其中方法 2更好;由于这些方法都是经验公式,所以它们能否应用于原位场地或其它类型回填料仍需进一步的研究。
        Soil-bentonite cut-off walls have been used widely to control pollution in landfills but their antifouling property(their ability to prevent contaminants in landfills from polluting the surrounding environment) decreases significantly over time due to a variety of factors(e.g. contaminant concentrations). In recent years, attapulgite has been considered as a backfill material for cut-off walls, but relevant studies are lacking. In this study, the compressibility and hydraulic conductivity of sand-attapulgite backfills were investigated using consolidation and hydraulic conductivity tests. In these tests, attapulgite comprised 10%, 20%,30%, 40%, 60%, 80%, or 100%(dry weight) of the backfills. The results showed that(1) the compression(C_c) and swell(C_s)indexes of the backfills increased linearly with increasing attapulgite content(A_p);(2) both the consolidation coefficient(C_v)calculated by the Casagrande and Taylor methods and the hydraulic conductivity(k_(theory)) calculated according to Terzaghi consolidation theory decreased with increasing attapulgite content. In the case of an effective consolidation stress σ′<100 kPa, k_(theory)<10-9 m/s when A_p≥30%, which was supported by the hydraulic conductivity tests. Two methods were developed based on laboratory data, for predicting the hydraulic conductivity of sand-attapulgite backfills. We conclude that the use of sand-attapulgite backfills applied to cut-off walls as substitutes for soil-bentonite backfills is technically feasible.
引文
ASTM(American Society for Testing and Materials),2001.Standard Test Method for pH of Soils,ASTM D4972-01.ASTM International,Philadelphia,USA.
    ASTM(American Society for Testing and Materials),2010.Standard Test Methods for Liquid Limit,Plastic Limit,and Plasticity Index of Soils,ASTM D4318-10.ASTMInternational,Philadelphia,USA.
    ASTM(American Society for Testing and Materials),2011a.Standard Test Methods for One-dimensional Consolidation Properties of Soils Using Incremental Loading,ASTM D2435/D2435M-11.ASTM International,Philadelphia,USA.
    ASTM(American Society for Testing and Materials),2011b.Standard Practice for Classification of Soils for Engineering Purposes(Unified Soil Classification System),ASTM D2487-11.ASTM International,Philadelphia,USA.
    ASTM(American Society for Testing and Materials),2014.Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer,ASTM D854-14.ASTM International,Philadelphia,USA.
    Britton JP,Filz GM,Little JC,2005.The effect of variability in hydraulic conductivity on contaminant transport through soil-bentonite cutoff walls.Journal of Geotechnical and Geoenvironmental Engineering,131(8):951-957.https://doi.org/10.1061/(asce)1090-0241(2005)131:8(951)
    Chapuis RP,Aubertin M,2003.On the use of the KozenyCarman equation to predict the hydraulic conductivity of soils.Canadian Geotechnical Journal,40(3):616-628.https://doi.org/10.1139/t03-013
    Chegenizadeh A,Keramatikerman M,Dalla Santa G,et al.,2018.Influence of recycled tyre amendment on the mechanical behaviour of soil-bentonite cut-off walls.Journal of Cleaner Production,177:507-515.https://doi.org/10.1016/j.jclepro.2017.12.268
    D'Appolonia DJ,1980.Soil-bentonite slurry trench cutoffs.Journal of Geotechnical and Geoenvironmental Engineering,106(4):399-417.
    Day SR,1994.The compatibility of slurry cutoff wall materials with contaminated groundwater.In:Daniel DE,Trautwein SJ(Eds.),Hydraulic Conductivity and Waste Contaminant Transport in Soils,ASTM STP 1142.American Society for Testing and Materials,West Conshohocken,USA.
    Dolinar B,2006.The impact of mineral composition on the compressibility of saturated soils.Mechanics of Materials,38(7):599-607.https://doi.org/10.1016/j.mechmat.2005.11.003
    Dolinar B,Macuh B,2016.Determining the thickness of adsorbed water layers on the external surfaces of clay minerals based on the engineering properties of soils.Applied Clay Science,123:279-284.https://doi.org/10.1016/j.clay.2015.12.029
    Du YJ,Fan RD,Reddy KR,et al.,2015a.Impacts of presence of lead contamination in clayey soil-calcium bentonite cutoff wall backfills.Applied Clay Science,108(5):111-122.https://doi.org/10.1016/j.clay.2015.02.006
    Du YJ,Fan RD,Liu SY,et al.,2015b.Workability,compressibility and hydraulic conductivity of zeoliteamended clayey soil/calcium-bentonite backfills for slurry-trench cutoff walls.Engineering Geology,195:258-268.https://doi.org/10.1016/j.enggeo.2015.06.020
    Evans JC,Costa MJ,Cooley B,1995.The state-of-stress in soil-bentonite slurry trench cutoff walls.In:Acar YN,Daniel DE(Eds.),Geoenvironment 2000:Characterization,Containment,Remediation,and Performance in Environmental Geotechnics.American Society of Civil Engineers,Reston,USA,p.1173-1191.
    Fan RD,Du YJ,Reddy KR,et al.,2014a.Compressibility and hydraulic conductivity of clayey soil mixed with calcium bentonite for slurry wall backfill:initial assessment.Applied Clay Science,101:119-127.https://doi.org/10.1016/j.clay.2014.07.026
    Fan RD,Du YJ,Liu SY,et al.,2014b.Compressibility and hydraulic conductivity of sand/clay-bentonite backfills.Geo-Shanghai 2014:Geoenvironmental Engineering,p.21-30.https://doi.org/10.1061/9780784413432.003
    Filz GM,1996.Consolidation stresses in soil-bentonite backfilled trenches.Proceedings of the 2nd International Congress on Environmental Geotechnics,p.497-502.
    Galan E,1996.Properties and applications of palygorskitesepiolite clays.Clay Minerals,31(4):443-453.https://doi.org/10.1180/claymin.1996.031.4.01
    Garvin SL,Hayles CS,1999.The chemical compatibility of cement-bentonite cut-off wall material.Construction and Building Materials,13(6):329-341.https://doi.org/10.1016/S0950-0618(99)00024-0
    Haden WL,Schwint IA,1967.Attapulgite:its properties and applications.Industrial&Engineering Chemistry,59(9):58-69.https://doi.org/10.1021/ie51403a012
    Hong CS,Shackelford CD,Malusis MA,2012.Consolidation and hydraulic conductivity of zeolite-amended soilbentonite backfills.Journal of Geotechnical and Geoenvironmental Engineering,138(1):15-25.https://doi.org/10.1061/(ASCE)GT.1943-5606.0000566
    Hong ZS,Yin J,Cui YJ,2010.Compression behaviour of reconstituted soils at high initial water contents.Géotechnique,60(9):691-700.https://doi.org/10.1680/geot.09.P.059
    Inazumi S,Kimura M,Nishiyama Y,et al.,2006.New type of hydraulic cutoff walls in coastal landfill sites from H-jointed steel pipe sheet piles with H-H joints.Proceedings of the 5th ICEG Environmental Geotechnics:Opportunities,Challenges and Responsibilities for Environmental Geotechnics,p.725-732.
    Joshi K,Kechavarzi C,Sutherland K,et al.,2010.Laboratory and in situ tests for long-term hydraulic conductivity of a cement-bentonite cutoff wall.Journal of Geotechnical and Geoenvironmental Engineering,136(4):562-572.https://doi.org/10.1061/(ASCE)GT.1943-5606.0000248
    Kenney TC,van Veen WA,Swallow MA,et al.,1992.Hydraulic conductivity of compacted bentonite-sand mixtures.Canadian Geotechnical Journal,29(3):364-374.https://doi.org/10.1139/t92-042
    Keramatikerman M,Chegenizadeh A,Nikraz H,2017.An investigation into effect of sawdust treatment on permeability and compressibility of soil-bentonite slurry cut-off wall.Journal of Cleaner Production,162:1-6.https://doi.org/10.1016/j.jclepro.2017.05.160
    Laner D,Fellner J,Brunner PH,2012.Site-specific criteria for the completion of landfill aftercare.Waste Management&Research,30(S9):88-99.https://doi.org/10.1177/0734242X12453610
    Li YC,Cleall PJ,Wen YD,et al.,2015.Stresses in soilbentonite slurry trench cut-off walls.Géotechnique,65(10):843-850.https://doi.org/10.1680/jgeot.14.P.219
    Lo IMC,Yang XY,2001.Use of organoclay as secondary containment for gasoline storage tanks.Journal of Environmental Engineering,127(2):154-161.https://doi.org/10.1061/(asce)0733-9372(2001)127:2(154)
    Malusis MA,Mc Keehan MD,2013.Chemical compatibility of model soil-bentonite backfill containing multiswellable bentonite.Journal of Geotechnical and Geoenvironmental Engineering,139(2):189-198.https://doi.org/10.1061/(ASCE)GT.1943-5606.0000729
    Malusis MA,Barben EJ,Evans JC,2009.Hydraulic conductivity and compressibility of soil-bentonite backfill amended with activated carbon.Journal of Geotechnical and Geoenvironmental Engineering,135(5):664-672.https://doi.org/10.1061/(ASCE)GT.1943-5606.0000041
    Mishra AK,Ohtsubo M,Li LY,et al.,2009.Effect of salt of various concentrations on liquid limit,and hydraulic conductivity of different soil-bentonite mixtures.Environmental Geology,57(5):1145-1153.https://doi.org/10.1007/s00254-008-1411-0
    Neaman A,Singer A,2004.Possible use of the Sacalum(Yucatan)palygorskite as drilling muds.Applied Clay Science,25(1-2):121-124.https://doi.org/10.1016/j.clay.2003.08.006
    Olson RE,1986.State of the art:consolidation testing.In:Yong RN,Townsend FC(Eds.),Consolidation of Soils:Testing and Evaluation,ASTM STP 892.American Society for Testing and Materials,West Conshohoken,USA,p.7-70.https://doi.org/10.1520/STP34606S
    Professional Committee of Urban Domestic Refuse Treatment of China Association of Environmental Protection Industry,2017.Development report on treatment industry of urban domestic refuse in 2017.China Environmental Protection Industry,(4):9-15(in Chinese).https://doi.org/10.3969/j.issn.1006-5377.2017.04.002
    Ruffing DG,Evans JC,Malusis MA,2010.Prediction of earth pressures in soil-bentonite cutoff walls.Geo Florida 2010:Advances in Analysis,Modeling and Design,p.2416-2425.https://doi.org/10.1061/41095(365)245
    Rumer RR,Ryan ME,1995.Barrier Containment Technologies for Environmental Remediation Applications.Wiley,New York,USA.
    Ryan CR,1987.Soil-bentonite cutoff walls.In:Woods RD(Ed.),Geotechnical Practice for Waste Disposal’87.American Society of Civil Engineers,New York,USA,p.182-204.
    Sanzeni A,Colleselli F,Grazioli D,2013.Specific surface and hydraulic conductivity of fine-grained soils.Journal of Geotechnical and Geoenvironmental Engineering,139(10):1828-1832.https://doi.org/10.1061/(ASCE)GT.1943-5606.0000892
    Sharma HD,Reddy KR,2004.Geoenvironmental Engineering:Site Remediation,Waste Containment,and Emerging Waste Management Technologies.John Wiley&Sons,Inc.,Hoboken,USA.
    Sreedharan V,Puvvadi S,2013.Compressibility behaviour of bentonite and organically modified bentonite slurry.Géotechnique,63(10):876-879.https://doi.org/10.1680/geot.SIP13.P.008
    Stern RT,Shackelford CD,1998.Permeation of sandprocessed clay mixtures with calcium chloride solutions.Journal of Geotechnical and Geoenvironmental Engineering,124(3):231-241.https://doi.org/10.1061/(asce)1090-0241(1998)124:3(231)
    Takai A,Inui T,Katsumi T,et al.,2014.Experimental study on the self-sealing capability of soil-bentonite mixture cutoff walls.Proceedings of the 7th International Congress on Environmental Geotechnics,p.411-416.
    Tallard G,1997.Very low conductivity self-hardening slurry for permanent enclosures.International Containment Technology Conference and Exhibition Proceeding.
    Tong X,2017.Mechanical and Hydraulic Properties of Soil-bentonite and Consolidation Behavior of Cutoff Wall.Ph D Thesis,Zhejiang University,Hangzhou,China(in Chinese).
    Wang S,Zhu W,Qian X,et al.,2016.Study of threshold gradient for compacted clays based on effective aperture.Environmental Earth Sciences,75:693.https://doi.org/10.1007/s12665-016-5502-z
    Xie HJ,Chen YM,Zhan LT,et al.,2009.Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system.Journal of Zhejiang University-SCIENCE A,10(3):439-449.https://doi.org/10.1631/jzus.A0820299
    Xu HQ,Zhu W,Qian XD,et al.,2016.Studies on hydraulic conductivity and compressibility of backfills for soilbentonite cutoff walls.Applied Clay Science,132-133:326-335.https://doi.org/10.1016/j.clay.2016.06.025
    Xu Y,Li JX,Yue LP,et al.,2015.Grain-size characteristics of red clay deposits on the eastern edge of Chinese Loess Plateau and its implications for Neogene evolution of East Asian winter monsoon.Environmental Earth Sciences,73(11):7445-7456.https://doi.org/10.1007/s12665-014-3918-x
    Yeo SS,Shackelford CD,Evans JC,2005.Consolidation and hydraulic conductivity of nine model soil-bentonite backfills.Journal of Geotechnical and Geoenvironmental Engineering,131(10):1189-1198.https://doi.org/10.1061/(asce)1090-0241(2005)131:10(1189)
    Zhu W,Xu HQ,Wang SW,et al.,2014.Hydraulic conductivity of model clay-based cut-off wall backfills.Proceedings of the 7th International Congress on Environmental Geotechnics,p.1516-1523.
    Zhu W,Xu HQ,Wang SW,et al.,2016.Influence of Ca Cl2solution on the permeability of different clay-based cutoff walls.Rock and Soil Mechanics,37(5):1224-1230(in Chinese).https://doi.org/10.16285/j.rsm.2016.05.002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700