用户名: 密码: 验证码:
三明治结构graphene-2Li-graphene的储氢性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrogen storage capacity of expanded sandwich structure graphene-2Li-graphene
  • 作者:周晓锋 ; 方浩宇 ; 唐春梅
  • 英文作者:Zhou Xiao-Feng;Fang Hao-Yu;Tang Chun-Mei;College of Science,Hohai Univeisity;
  • 关键词:石墨烯 ; Li ; 电子性质 ; 储氢 ; 密度泛函理论
  • 英文关键词:graphene;;Li;;electronic properties;;hydrogen storage;;density functional theory
  • 中文刊名:物理学报
  • 英文刊名:Acta Physica Sinica
  • 机构:河海大学理学院;
  • 出版日期:2019-02-28 15:40
  • 出版单位:物理学报
  • 年:2019
  • 期:05
  • 基金:中央高校基本科研业务费(批准号:2016B01914,2018B19414);; 水利科技创新项目(批准号:2015087);; 江苏省自然科学基金(批准号:BK20161501);; 江苏省六大人才高峰项目(批准号:2015-XCL-010)资助的课题~~
  • 语种:中文;
  • 页:79-87
  • 页数:9
  • CN:11-1958/O4
  • ISSN:1000-3290
  • 分类号:O613.71;TB383.1
摘要
本文使用密度泛函理论中的广义梯度近似对扩展三明治结构graphene-2Li-graphene的几何结构、电子性质和储氢性能进行计算研究.计算得知:位于单层石墨烯中六元环面心位上方的单个Li原子与基底之间的结合能最大(1.19 eV),但小于固体Li的实验内聚能(1.63 eV),然而,在双层石墨烯之间的单个Li原子与基底的结合能增加到3.41 eV,远大于固体Li的实验内聚能,因此位于双层石墨烯之间的多个Li原子不会成簇,有利于进一步储氢.扩展三明治结构graphene-2Li-graphene中每个Li原子最多可以吸附3个H_2分子,储氢密度高达10.20 wt.%,超过美国能源部制定的5.5 wt.%的目标.该体系对1—3个H_2分子的平均吸附能分别为0.37,0.17和0.12 eV,介于物理吸附和化学吸附(0.1—0.8 eV)之间,因此该体系可以实现常温常压下对H_2的可逆吸附.通过对态密度分析可知,每个Li原子主要通过电场极化作用吸附多个H_2分子.动力学和巨配分函数计算表明graphene-2Li-graphene结构对H_2分子具有良好的可逆吸附性能.该研究可以为开发良好的储氢材料提供一个好的研究思路,为实验工作提供理论依据.
        The growth of population and the limited supply of fossil fuels have forced the world to seek for new kinds of alternative energy sources which are abundant,renewable,efficient,secure and pollution-free.In this regard,hydrogen is generally considered as a potential candidate.However,it is a great challenge to find hydrogen storage materials with large hydrogen gravimetric density under ambient thermodynamic conditions.The most effective way to improve the hydrogen storage capacity is to decorate the pure nanomaterials with transition metals,alkaline metals,and alkaline earth metals.The generalized gradient approximation based on density functional theory is used to study the hydrogen storage capacity of the expanded sandwich structure graphene-2 Li-graphene.It is calculated that the structure with the Li atom located above the face site of the hexagonal ring of the graphene has the maximum binding energy(1.19 eV),which is less than the experimental cohesive energy of bulk Li(1.63 eV).However,the calculated binding energy values of the Li atom to the upper and lower graphene layer are both 3.43 eV,which is much larger than the experimental cohesive energy value of bulk Li,so it can prevent the Li atoms from clustering between graphene layers.Each Li atom in the graphene-2 Li-graphene structure can adsorb 3 H_2 molecules at most.Thus,the hydrogen gravimetric density of graphene-2(Li-3H_2)-graphene is 10.20 wt.%,which had far exceeded the gravimetric density of the target value of 5.5 wt.%by the year 2017 specified by the US Department of Energy.The average adsorption energy values of H_2adsorbed per Li are 0.37,0.17,and 0.12 eV respectively for 1-3 H_2 molecules,which are between the physical adsorption and chemical adsorption(0.1-0.8 eV),therefore,it can realize the reversible adsorption of hydrogen.Each Li atom can adsorb 3 H_2 molecules at most by the electronic polarization interaction.The dynamic calculations and GFRF calculations show that the interlayer Li atom doped double-layer graphene has good reversible adsorption performance for hydrogen.This research can provide a good research idea for developing good hydrogen storage materials and theoretical basis for experimental worker.These findings can suggest a way to design hydrogen storage materials under the near-ambient conditions.
引文
[1]Schlapbach L,Zuttel A 2001 Nature 414 353
    [2]Chandrakumar K R S,Ghosh S K 2008 Nano Lett.8 13
    [3]Rosi N L,Eckert J,Eddaoudi M,Vodak D T,Kim J,O'keeffe M,Yaghi O M 2003 Science 300 1127
    [4]Han S S,Goddard W A 2007 J.Am.Chem.Soc.129 8422
    [5]Kealy T J,Pauson P L 1951 Nature 168 1039
    [6]Sun Q,Wang Q,Jena P,Kawazoe Y 2005 J.Am.Chem.Soc.127 14582
    [7]Kim D,Lee S,Hwang Y,Yun K H,Chung Y C 2014 Int.J.Hydrogen Energy 39 13189
    [8]Xu B,Lei X L,Liu G,Wu M S,Ouyang C Y 2014 Int.J.Hydrogen Energy 39 17104
    [9]Seenithurai S,Pandyan R K,Kumar S V,Saranya C,Mahendran M 2014 Int.J.Hydrogen Energy 39 11016
    [10]Chen L,Zhang Y,Koratkar N,Jena P,Nayak S K 2008Phys.Rev.B 77 033405
    [11]Mauron P,Gaboardi M,Remhof A,Bliersbach A,Sheptyakov D,Aramini M,Vlahopoulou G,Giglio F,Pontiroli D,Ricco M,Zuttel A 2013 J.Phys.Chem.C 117 22598
    [12]Lein M,Frunzke J,Frenking G 2003 Inorg.Chem.42 2504
    [13]Youn I S,Kim D Y,Singh N J,Park S W,Youn J,Kim K S2011 J.Chem.Theor.Comput.8 99
    [14]Kealy T J,Pauson P L 1951 Nature 168 1039
    [15]Wilkinson G,Rosenblum M,Whiting M C,Woodward R B 1952 J.Am.Chem.Soc.74 2125
    [16]Kubas G J 2001 Kluwer Academic(New York:Plenum Publishing)
    [17]Lein M,Frunzke J,Frenking G 2003 Inorg.Chem.42 2504
    [18]Youn I S,Kim D Y,Singh N J,Park S W,Youn J,Kim K S2011 J.Chem.Theory Comput.8 99
    [19]Sun Q,Wang Q,Jena P,Kawazoe Y 2005 J.Am.Chem.Soc.127 14582
    [20]Delley B 1990 J.Chem.Phys.92 508
    [21]Zhang Q Y,Tang C M,Zhu W H,Cheng C 2018 J.Phys.Chem.C 122 22838
    [22]Chang L T,Wei C,Xiao H T 2006 Chin.Phys.15 2718
    [23]Zhao J Y,Zhao F Q,Xu S Y,Ju X H 2013 J.Phys.Chem.A117 2213
    [24]Grimme S,Antony J,Ehrlich S,Krieg H 2010 J.Chem.Phys.132 154104
    [25]Ma L,Zhang J M,Xu K W 2014 Appl.Surf.Sci.292 921
    [26]Gao Y,Wu X,Zeng X C 2014 J.Mater.Chem.A 2 5910
    [27]Park J,Burova S,Rodgers A S,Lin M C 1999 J.Phys.Chem.A 103 9036
    [28]Abad E,Dappe Y J,Martínez J I,Flores F,Ortega J 2011 J.Chem.Phys.134 044701
    [29]Pliva J,Johns J W C,Goodman L 1991 J.Mol.Spectrosc.148 427
    [30]Toyoda K,Nakano Y,Hamada I,Lee K,Yanagisawa S,Morikawa Y 2009 Surf.Sci.603 2912
    [31]Wang X B,Tang C M,Zhu W H,Zhou X F,Zhou Q H,Cheng C 2018 J.Phys.Chem.C 122 9654
    [32]Kealy T J,Pauson P L 1951 Nature 168 1039
    [33]Wu G,Wang J,Zhang X,Zhu L 2009 J.Phys.Chem.C 1137052
    [34]Wang Z C 2013 Thermodynamics·Statistical Physics(5th Ed.)(Beijing:Higher Education Press)(in Chinese)[汪志诚2013热力学·统计物理(第五版)(北京:高等教育出版社)]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700