用户名: 密码: 验证码:
Linking gold mineralization to regional-scale drivers of mineral systems using in situ U-Pb geochronology and pyrite LA-ICP-MS element mapping
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Linking gold mineralization to regional-scale drivers of mineral systems using in situ U-Pb geochronology and pyrite LA-ICP-MS element mapping
  • 作者:Imogen ; O.H.Fielding ; Simon ; P.Johnson ; Sebastien ; Meffre ; Jianwei ; Zi ; Stephen ; Sheppard ; Ross ; R.Large ; Birger ; Rasmusseng
  • 英文作者:Imogen O.H. Fielding;Simon P. Johnson;Sebastien Meffre;Jianwei Zi;Stephen Sheppard;Ross R. Large;Birger Rasmusseng;Department of Applied Geology, Curtin University;Geological Survey of Western Australia;CODES ARC Centre of Excellence in Ore Deposits, University of Tasmania;State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences;John de Laeter Centre, Curtin University;Calidus Resources Ltd;School of Earth Sciences, The University of Western Australia;
  • 英文关键词:Geochronology;;Xenotime;;SHRIMP;;LA-ICP-MS;;Gold mineralization;;Capricorn orogen
  • 中文刊名:Geoscience Frontiers
  • 英文刊名:地学前缘(英文版)
  • 机构:Department of Applied Geology, Curtin University;Geological Survey of Western Australia;CODES ARC Centre of Excellence in Ore Deposits, University of Tasmania;State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences,Wuhan;John de Laeter Centre, Curtin University;Calidus Resources Ltd;School of Earth Sciences, The University of Western Australia;
  • 出版日期:2019-01-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:01
  • 基金:funded through an ARC linkage grant (LP130100922) and industry scholarship by Northern Star Resources as a part of a PhD by I. O.Fielding. S. P.;; the financial support of the Australian Research Council and Auscope NCRIS
  • 语种:英文;
  • 页:93-109
  • 页数:17
  • CN:11-5920/P
  • ISSN:1674-9871
  • 分类号:P618.51;P597.3
摘要
Proterozoic orogens commonly host a range of hydrothermal ores that form in diverse tectonic settings at different times. However, the link between mineralization and the regional-scale tectonothermal evolution of orogens is usually not well understood, especially in areas subject to multiple hydrothermal events.Regional-scale drivers for mineral systems vary between the different classes of hydrothermal ore, but all involve an energy source and a fluid pathway to focus mineralizing fluids into the upper crust. The Mount Olympus gold deposit in the Proterozoic Capricorn Orogen of Western Australia, was regarded as an orogenic gold deposit that formed at ca. 1738 Ma during the assembly of Proterozoic Australia. However,the trace element chemistry of the pyrite crystals closely resembles those of the Carlin deposits of Nevada,with rims that display solid solution gold accompanied by elevated As, Cu, Sb, Hg, and Tl, surrounding gold-poor cores. New SHRIMP UeP b dating of xenotime intergrown with auriferous pyrite and ore-stage alteration minerals provided a weighted mean~(207) Pb*/~(206) Pb* date of 1769 ± 5 Ma, interpreted as the age of gold mineralization. This was followed by two discrete episodes of hydrothermal alteration at 1727 ± 7 Ma and 1673 ± 8 Ma. The three ages are linked to multiple reactivation of the crustal-scale Nanjilgardy Fault during repeated episodes of intracratonic reworking. The regional-scale drivers for Carlin-like gold mineralization at Mount Olympus are related to a change in tectonic regime during the final stages of the intracratonic 1820 -1770 Ma Capricorn Orogeny. Our results suggest that substantial sized Carlin-like gold deposits can form in an intracratonic setting during regional-scale crustal reworking.
        Proterozoic orogens commonly host a range of hydrothermal ores that form in diverse tectonic settings at different times. However, the link between mineralization and the regional-scale tectonothermal evolution of orogens is usually not well understood, especially in areas subject to multiple hydrothermal events.Regional-scale drivers for mineral systems vary between the different classes of hydrothermal ore, but all involve an energy source and a fluid pathway to focus mineralizing fluids into the upper crust. The Mount Olympus gold deposit in the Proterozoic Capricorn Orogen of Western Australia, was regarded as an orogenic gold deposit that formed at ca. 1738 Ma during the assembly of Proterozoic Australia. However,the trace element chemistry of the pyrite crystals closely resembles those of the Carlin deposits of Nevada,with rims that display solid solution gold accompanied by elevated As, Cu, Sb, Hg, and Tl, surrounding gold-poor cores. New SHRIMP UeP b dating of xenotime intergrown with auriferous pyrite and ore-stage alteration minerals provided a weighted mean~(207) Pb*/~(206) Pb* date of 1769 ± 5 Ma, interpreted as the age of gold mineralization. This was followed by two discrete episodes of hydrothermal alteration at 1727 ± 7 Ma and 1673 ± 8 Ma. The three ages are linked to multiple reactivation of the crustal-scale Nanjilgardy Fault during repeated episodes of intracratonic reworking. The regional-scale drivers for Carlin-like gold mineralization at Mount Olympus are related to a change in tectonic regime during the final stages of the intracratonic 1820 -1770 Ma Capricorn Orogeny. Our results suggest that substantial sized Carlin-like gold deposits can form in an intracratonic setting during regional-scale crustal reworking.
引文
Arehart, G.B., 1996. Characteristics and origin of sediment-hosted disseminated gold deposits:a review. Ore Geology Reviews 11(6), 383-403.
    Berger, B.R., Bagby, W.C., 1991. The Geology and Origin of Carlin-type Gold Deposits,Gold Metallogeny and Exploration. Springer US, Boston, MA, pp. 210-248.
    Belousov, I., Large, R.R., Meffre, S., Danyushevsky, L.V., Steadman, J., Beardsmore, T.,2016. Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia:implications for gold and copper exploration. Ore Geology Reviews 79, 474-499.
    Brauhart, C.W., Grunsky, E.C., Hagemann, S.G., 2017. Magmato-hydrothermal space:a new metric for geochemical characterisation of metallic ore deposits. Ore Geology Reviews 86, 867-895.
    Cline, J.S., Hofstra, A.H., Muntean, J.L., Tosdal, R.M., Hickey, K.A., 2005. Carlin-type gold deposits in Nevada:critical geologic characteristics and viable models.Economic Geology 100th Anniversary Volume 451-484.
    Cook, F., Erdmer, P., 2005. An 1800 km cross section of the lithosphere through the northwestern North American plate:lessons from 4.0 billion years of Earth's history. Canadian Journal of Earth Sciences 42(6), 1295-1311.
    Danyushevsky, L., Robinson, P., Gilbert, S., Norman, M., Large, R., McGoldrick, P.,Shelley, M., 2011. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS:standard development and consideration of matrix effects. Geochemistry Exploration Environment Analysis 11(1), 51-60.
    Dill, H.G., 2010. The"chessboard"classification scheme of mineral deposits:mineralogy and geology from aluminum to zirconium. Earth Science Reviews100(1), 1-420.
    Fielding, I.O.H., Johnson, S.P., Zi, J.-W., Rasmussen, B., Muhling, J.R., Dunkley, D.J.,Sheppard, S., Wingate,M.T.D., Rogers, J.R., 2017. Using in situ SHRIMP U-Pb monazite and xenotime geochronology to determine the age of orogenic gold mineralization:an example from the Paulsens mine. Southern Pilbara Craton Economic Geology 112(5), 1205-1230.
    Fletcher, I.R., McNaughton, N.J., Aleinikoff, J.A., Rasmussen, B., Kamo, S.L., 2004.Improved calibration procedures and new standards for U-Pb and Th-Pb dating of Phanerozoic xenotime by ion microprobe. Chemical Geology 209(3-4), 295-314.
    Fletcher, I.R., Rasmussen, B., McNaughton, N.J., 2000. SHRIMP U-Pb geochronology of authigenic xenotime and its potential for dating sedimentary basins.Australian Journal of Earth Sciences 47(5), 845-859.
    Goldfarb, R.J., Groves, D.I., 2015. Orogenic gold:common or evolving fluid and metal sources through time. Lithos 233, 2-26.
    Goldfarb, R.J., Groves, D.I., Gardoll, S., 2001. Orogenic gold and geologic time:a global synthesis. Ore Geology Reviews 18(1-2), 1-75.
    Groves, D., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., Robert, F., 1998.Orogenic gold deposits:a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews13(1-5), 7-27.
    Groves, D.I., Goldfarb, R.J., Robert, F., Hart, C.J.R., 2003. Gold deposits in metamorphic belts:overview of current understanding, outstanding problems.Future Research and Exploration Significance Economic Geology 98(1), 1-29.
    Hronsky, J.M., Groves, D.I., Loucks, R.R., Begg, G.C., 2012. A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Mineralium Deposita 47(4), 339-358.
    Hu, R.-Z., Su, W.-C., Bi, X.-W., Tu, G.-Z., Hofstra, A.H., 2002. Geology and geochemistry of Carlin-type gold deposits in China. Mineralium Deposita 37,378-392.
    Huston, D.L.,Mernagh, T.P., Hagemann, S.G., Doublier, M.P, Fiorentini, M.,Champion, D.C., Lynton Jaques, A., Czarnota, K., Cayley, R., Skirrow, R.,Bastrakov, E., 2016. Tectono-metallogenic systems-the place of mineral systems within tectonic evolution, with an emphasis on Australian examples. Ore Geology Reviews 76,168-210.
    Johnson, S.P., Korhonen, F.J., Kirkland, C.L., Cliff, J.B., Belousova, E.A., Sheppard, S.,2017. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust:from subduction magmatism to cratonization. Lithos 268-271,76-86.
    Johnson, S.P., Sheppard, S., Rasmussen, B., Wingate,M.T.D., Kirkland, C.L.,Muhling, J.R., Fletcher, I.R., Belousova, E.A., 2011. Two collisions, two sutures:punctuated pre-1950 Ma assembly of the West Australian craton during the ophthalmian and Glenburgh orogenies. Precambrian Research 189(3-4),239-262.
    Johnson, S.P., Thorne, A.M., Tyler, I.M., Korsch, R.J., Kennett, B.L.N., Cutten, H.N.,Goodwin, J., Blay, O., Blewett, R.S., Joly, A., Dentith, M.C., Aitken, A.R.A.,Holzschuh, J., Salmon, M., Reading, A., Heinson, G., Boren, G., Ross, J.,Costelloe, R.D., Fomin, T., 2013. Crustal architecture of the Capricorn orogen,Western Australia and associated metallogeny. Australian Journal of Earth Sciences 60(6-7), 681-705.
    Korhonen, F.J.,Johnson, S.P., Wingate, M.T.D.,Kirkland, C.L.,Fletcher, I.R.,Dunkley, D.J., Roberts, M.P., Sheppard, S., Muhling, J.R., Rasmussen, B., 2017.Radiogenic heating and craton-margin plate stresses as drivers for intrplate orogeny. Journal of Metamorphic Geology 35, 631-661.
    Krapez, B., 1999. Stratigraphic record of an Atlantic-type global tectonic cycle in the palaeoproterozoic Ashburton province of Western Australia. Australian Journal of Earth Sciences 46(1), 71-87.
    Krapez, B., Muller, S.G., Bekker, A., 2015. Stratigraphy of the late palaeoproterozoic(~2.03 Ga)Wooly dolomite, Ashburton province, Western Australia:a carbonate platform developed in a failed rift basin. Precambrian Research 271,1-19.
    Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S.,Scott, R., Emsbo, P., Thomas, H., Singh, B., Foster,J., 2009. Gold and trace element zonation in pyrite using a laser imaging technique:implications for the timingof gold in orogenic and carlin-style sediment-hosted deposits. Economic Geology 104(5), 635-668.
    Ludwig, K.R., 2003. Isoplot/Ex Version 3.00, a Geochronological Toolkit for Microsoft Excel, vol. 4. Berkeley Geochronology Centre Special Publication, p. 73.
    Ludwig, K.R., 2009. Squid 2.50, a User's Manual. Berkeley Geochronology Centre,Berkeley, California, USA, p. 95.
    McCuaig, T.C., Hronsky,J.M.A., 2014. The mineral systems concept:the key to exploration targeting. In:Kelly, K.D., Golden, H.C.(Eds.), Building Exploration Capability for the 21st Century, vol. 18. Society of Economic Geologists:Special Publication, pp. 153-175.
    Morant, P., Doepel, G., 1997. The Mount Olympus Gold Deposit:New Generation Gold Mines, vol. 97. Australian Mineral Foundation, Perth, Western Australia,pp. 6.1-6.9.
    Muntean, J.L., Cline, J.S., Simon, A.C., Longo, A.A., 2011. Magmatic-hydrothermal origin of Nevada's Carlin-type gold deposits. Nature Geoscience 4(2), 122-127.
    Nesbitt, B.E., 1988. Gold deposit continuum:a genetic model for lode Au mineralization in the continental crust. Geology 16(11), 1044-1048.
    Northern Star Resources Limited, 2015. Northern Star Resources Limited 2015Annual Report. http://www.nsrltd.com/wp-content/uploads/2015/08/NSTAnnual-Report-2015-26-8-2015-new-coverl.pdf.
    Rasmussen, B., Sheppard, S., Fletcher, I.R., 2006. Testing ore deposit models using in situ U-Pb geochronology of hydrothermal monazite:Paleoproterozoic gold mineralization in northern Australia. Geology 34(2), 77-80.
    Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L., Ewing, R.C.,2005. Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta 69(11), 2781-2796.
    Robert, F., Brommecker, R., Bourne, B.T., Dobak, P.J., McEwan, C.J., Rowe, R.R.,AZhou, X., 2007. Models and Exploration Methods for Major Gold Deposit Types in Milkereit, B. In:Exploration 07, Fifth Decennial International Conference on Mineral Exploration, Toronto, Canada. Decennial Mineral Exploration Conferences, pp. 691-711.
    Sener, A.K., Young, C., Groves, D.I., Krapez, B., Fletcher, I.R., 2005. Major orogenic gold episode associated with Cordilleran-style tectonics related to the assembly of Paleoproterozoic Australia? Geology 33, 225-228.
    Sheppard, S., Rasmussen, B., Muhling, J.R., Farrell, T.R., Fletcher, I.R., 2007. Grenvillian-aged orogenesis in the palaeoproterozoic Gascoyne complex, Western Australia:1030-950 Ma reworking of the proterozoic Capricorn orogen. Journal of Metamorphic Geology 25, 477-494.
    Sheppard, S., Occhipinti, S.A., Nelson, D.R., 2005. Intracontinental reworking in the Capricorn orogen, Western Australia:the 1680-1620 Ma Mangaroon orogeny.Australian Journal of Earth Sciences 52, 443-460.
    Sheppard, S., Bodorkos, S., Johnson, S.P, Wingate, M.T.D., Kirkland, C.L., 2010. The Paleoproterozoic Capricorn Orogeny:intracontinental reworking not continent-continent collision. Geological Survey of Western Australia Report108, 33.
    Simmons, S.F., White, N.C. John, D.A., 2005. Geological characteristics of epithermal precious and base metal deposits. In:Hedenquist, J.W., Thompson,J.F.H.,Goldfarb, R.J., Richards, J.P.(Eds.), Economic Geology 100th Anniversary Volume. Society of Exonomic Geologists, pp. 485-522.
    Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207-221.
    Stern, R.A., Rayner, N., 2003. Ages of Several Xenotime Megacrysts by ID-TIMS:Potential Reference Materials for Ion Microprobe U-pb Geochronology:Radiogenic Age and Isotopic Studies:Report 16. Geological Survey of Canada:Current Research 2003-F1, p. 7.
    Teal, L., Jackson, M., 2002. Geologic overview of the Carlin trend gold deposits:gold deposits of the Carlin trend. Nevada Bureau of Mines and Geology, Bulletin 111,9-19.
    Thorne, A.M., Seymour, D.B., 1991. Geology of the Ashburton basin Western Australia. Geological Survey of Western Australia Bulletin 139,162.
    Tyler, I.M., Thorne, A.M., 1990. The northern margin of the Capricorn Orogen,Western Australia-an example of an Early Proterozoic collision zone. Journal of Structural Geology 12, 685-701.
    Wells, M., Laukamp, C., Hancock, E.A., 2016. Reflectance spectroscopic characterisation of mineral alteration footprints associated with sediment-hosted gold mineralisation at Mt Olympus(Ashburton Basin, Western Australia). Australian Journal of Earth Sciences 63, 987-1002.
    Wyborn, L.A.I., Heinrich, C.A., Jaques, A.L., 1994. Australian Proterozoic mineral systems:essential ingredients and mappable criteria. In:Hallenstein, P.C.(Ed.),Australian Mining Looks North-the Challenges and Choices. Australian Institute of Mining and Metallurgy; 1994 AUSIMM Annual Conference, Darwin,Northern Territory, pp. 109-115.
    Young, C.J., Groves, D.I., Morant, P., 2003. Sediment-hosted disseminated gold mineralisation in the Palaeopeoterozoic Ashburton Provience, Western Australia:a new epizonal orogenic gold province related to Capricorn OrogenyIn:Eliopoulos, et al.(Eds.), Mineral exploration and Sustainable Development,Proceedings of the 7th Biennial SGA Meeting. Millpress, Athens, Greece,pp. 835-838.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700