用户名: 密码: 验证码:
地球科学中铁同位素分析测试方法研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on test methods of iron isotope analysis in earth science
  • 作者:梁鹏
  • 英文作者:LIANG Peng;State Key Laboratory of Continental Dynamics/Department of Geology, Northwest University;
  • 关键词:Fe同位素 ; MC-ICP-MS ; 质量歧视校正 ; 元素分馏
  • 英文关键词:Fe isotope;;MC-ICP-MS;;mass discrimination correction;;elemental fractionation
  • 中文刊名:地下水
  • 英文刊名:Ground Water
  • 机构:西北大学地质学系/大陆动力学国家重点实验室;
  • 出版日期:2019-07-25
  • 出版单位:地下水
  • 年:2019
  • 期:04
  • 语种:中文;
  • 页:103-106
  • 页数:4
  • CN:61-1096/TV
  • ISSN:1004-1184
  • 分类号:P597
摘要
随着多接收等离子体质谱仪分析测试技术的发展,Fe同位素得到了非常广泛的应用,尤其在地球科学中,铁同位素应用于各种高温(如地幔、地壳的部分熔融、岩浆分异等)、低温(风化、沉积等)地质作用过程。目前,铁同位素分析测试方法根据进样方式不同可以分为溶液进样和飞秒激光剥蚀进样联用多接受等离子体质谱(即SN-MC-ICP-MS和FSLA-MC-ICP-MS)。研究者大多采用溶液法,该方法需要对样品进行复杂的化学前处理,但测试的精度较好;传统纳米激光器在剥蚀过程中的热效应会导致元素分馏,飞秒激光器可以大大减小由于热效应导致的元素分馏,提高离子的传输效率和灵敏度。本文综述了铁同位素测试方法的研究进展,包括样品溶解、化学分离、质量歧视校正、干扰校正及飞秒激光分析铁同位素的良好前景。
        With the development of multi-receiver plasma mass spectrometer analysis and testing technology, Fe isotope has been widely used, especially in earth science, iron isotope is applied to various high temperatures(such as mantle, partial melting of the earth's crust, magma differentiation). Etc.), low temperature(weathering, sedimentation, etc.) geological processes. At present, the iron isotope analysis test method can be divided into solution injection and femtosecond laser ablation injection combined with multi-acceptance plasma mass spectrometry( SN-MC-ICP-MS and FSLA-MC-ICP-MS) according to different injection methods. Most of the researchers use the solution method, which requires complex chemical pretreatment of the sample, but the accuracy of the test is better. The thermal effect of the traditional nano laser in the ablation process leads to fractional distillation of elements, and the femtosecond laser can greatly reduce the thermal effect. The element is fractionated to improve the efficiency and sensitivity of ion transport. This paper reviews the research progress of iron isotope test methods, including sample dissolution, chemical separation, mass discrimination correction, interference correction and femtosecond laser analysis of iron isotope.
引文
[1]赵新苗,等.Fe同位素在地幔地球化学研究中的应用及进展.岩石矿物学杂志.2008.27(5):435-440.
    [2]王世霞,等.四川攀枝花钒钛磁铁矿床Fe同位素特征及其成因指示意义.地球学报.2012(6):995-1004.
    [3]朱祥坤,等.铁同位素的MC-ICP-MS测定方法与地质标准物质的铁同位素组成.岩石矿物学杂志.2008.27(4):263-272.
    [4]朱祥坤,等.早前寒武纪硫铁矿矿床Fe同位素特征及其地质意义—以山东石河庄和河北大川为例.岩石矿物学杂志.2008.27(5):429-434.
    [5]马信江,等.AG MP-1M阴离子分离Cu、Fe、Zn及其在Fe同位素测定上的应用.地球化学.2009.38(5):480-486.
    [6]王世霞,朱祥坤.广东湛江湖光岩地区玄武岩风化壳Fe同位素研究.地质学报.2013.87(9):1461-1468.
    [7]侯可军,秦燕,李延河.Fe同位素的MC-ICP-MS测试方法.地球学报.2012(6):885-892.
    [8]孙剑,等.白云鄂博地区相关地质单元的铁同位素特征及其对白云鄂博矿床成因的制约.地质学报.2012.86(5):819-828.
    [9]王跃,朱祥坤.铁同位素体系及其在矿床学中的应用.岩石学报.2012.28(11):3638-3654.
    [10]Beard,B.L.and C.M.Johnson,High precision iron isotope measurements of terrestrial and lunar materials.Geochimica et Cosmochimica Acta.1999.63(11-2):1653-1660.
    [11]Belshaw,N.S.,et al.,High precision measurement of iron isotopes by plasma source mass spectrometry.International Journal of Mass Spectrometry.2000.197(1-3):191-195.
    [12]Matthews,A.,X.Zhu and K.O Nions,Kinetic iron stable isotope fractionation between iron (-II) and (-III) complexes in solution.Earth and Planetary Science Letters.2001.192(1):81-92.
    [13]Skulan,J.L.,B.L.Beard and C.M.Johnson,Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite.Geochimica et Cosmochimica Acta.2002.66(17):2995-3015.
    [14]Zhu,X.K.,et al.,Mass fractionation processes of transition metal isotopes.Earth and Planetary Science Letters.2002.200(1-2):47-62.
    [15]Weyer,S.and J.B.Schwieters,High precision Fe isotope measurements with high mass resolution MC-ICPMS.International Journal of Mass Spectrometry.2003.226(3):355-368.
    [16]Kehm,K.,et al.,High precision iron isotope measurements of meteoritic material by cold plasma ICP-MS.Geochimica et Cosmochimica Acta.2003.67(15):2879-2891.
    [17]Rouxel,O.,et al.,Iron isotope fractionation during oceanic crust alteration.Chemical Geology.2003.202(1-2):155-182.
    [18]Schoenberg,R.and F.von Blanckenburg,An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS.International Journal of Mass Spectrometry.2005.242(2-3):257-272.
    [19]Poitrasson,F.and R.Freydier,Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS.Chemical Geology.2005.222(1-2):132-147.
    [20]Dideriksen,K.,J.A.Baker and S.L.S.Stipp,Iron isotopes in natural carbonate minerals determined by MC-ICP-MS with a 58Fe–54Fe double spike.Geochimica et Cosmochimica Acta.2006.70(1):118-132.
    [21]Chapman,J.B.,et al.,Iron isotope fractionation during leaching of granite and basalt by hydrochloric and oxalic acids.Geochimica et Cosmochimica Acta.2009.73(5):1312-1324.
    [22]Steinhoefel,G.,I.Horn and F.von Blanckenburg,Matrix-independent Fe isotope ratio determination in silicates using UV femtosecond laser ablation.Chemical Geology.2009.268(1-2):67-73.
    [23]Steinhoefel,G.,I.Horn and F.von Blanckenburg,Micro-scale tracing of Fe and Si isotope signatures in banded iron formation using femtosecond laser ablation.Geochimica et Cosmochimica Acta.2009.73(18):5343-5360.
    [24]Dauphas,N.,A.Pourmand and F.Teng,Routine isotopic analysis of iron by HR-MC-ICPMS:How precise and how accurate Chemical Geology.2009.267(3-4):175-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700