用户名: 密码: 验证码:
BiVO_4-MnO_2光催化剂的制备及性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Properties of BiVO_4-MnO_2 Composite Photocatalysts
  • 作者:吴香 ; 徐龙君 ; 刘成伦
  • 英文作者:WU Xiang;XU Long-jun;LIU Cheng-lun;State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University;College of Chemistry and Chemical Engineering, Chongqing University;
  • 关键词:光催化剂 ; BiVO4-MnO2 ; 催化 ; 降解 ; 废物处理 ; 水处理技术
  • 英文关键词:photocatalyst;;BiVO4-MnO2;;catalysis;;degradation;;waste treatment;;water treatment
  • 中文刊名:精细化工
  • 英文刊名:Fine Chemicals
  • 机构:重庆大学煤矿灾害动力学与控制国家重点实验室;重庆大学化学化工学院;
  • 出版日期:2019-05-24 13:16
  • 出版单位:精细化工
  • 年:2019
  • 期:09
  • 基金:重庆市基础与前沿研究计划重点项目(CSTC,2015jcyjBX0015)
  • 语种:中文;
  • 页:182-188
  • 页数:7
  • CN:21-1203/TQ
  • ISSN:1003-5214
  • 分类号:O643.36;X703
摘要
采用一步水热法制备了BiVO_4-MnO_2复合材料,通过XRD、FTIR、SEM、EDS、XPS、PL和UV-Vis DRS对其结构进行了表征,并以罗丹明B溶液作为目标降解物考察了其光催化活性。结果表明:BiVO_4复合MnO_2构成了较大的孔径和比表面积,有利于分子尺寸为1.59 nm×1.18 nm×0.56 nm的罗丹明B分子扩散和吸附;BiVO_4与MnO_2二者之间产生了电子耦合作用,减弱了BiVO_4的荧光强度,表明复合MnO_2能有效地抑制光生电子和空穴的复合,提高量子的利用效率,使得复合材料较单独的BiVO_4或MnO_2对罗丹明B(Rh B)有较好的光催化降解效果。当m(MnO_2)∶m(BiVO4)=10∶100时,光照3 h对10 mg/L的Rh B(100 mL)的降解率达到97.8%。
        BiVO_4-MnO_2 composite catalysts with different mass ratios of BiVO_4 to MnO_2 were prepared by one-step hydrothermal method. The structure and properties of the as-prepared composite catalysts were characterized by XRD, FTIR, SEM, EDS, XPS, PL and UV-Vis DRS. The catalytic-oxidative activities of the samples were evaluated by the degradation of Rhodamine B(RhB). The results showed that BiVO_4@MnO_2 exhibited a large pore size and surface area, which was beneficial to the diffusion and adsorption of RhB with a molecular size of 1.59 nm×1.18 nm×0.56 nm. Compared with BiVO_4 or MnO_2, BiVO_4@MnO_2 had better photocatalysis effect for RhB because of the interaction between BiVO_4 and MnO_2 produced an electronic coupling formed heterojunction, which could effectively inhibit the recombination of photogenerated electrons and holes, and improve the utilization efficiency of quantum. When m(MnO_2)∶m(BiVO_4)= 10∶100, the degradation rate of 10 mg/L RhB(100 mL) under irradiation for 3 h could reach 97.8%.
引文
[1] Pung S, Chan Y, Sreekantan S, et al. Photocatalytic activity of ZnO-MnO2 core shell nanocomposite in degradation of RhB dye[J].Pigment&Resin Technology, 2016, 45(6):408-418.
    [2] Fei J B, Cui Y, Yan X H, et al. Controlled preparation of MnO2hierarchical hollow nanostructures and their application in water treatment[J]. Advanced Materials, 2010, 20(3):452-456.
    [3] Boppana V B R, Jiao F, Yusuf S, et al. Nanostructured alkalinecation-containingδ-MnO2 for photocatalytic water oxidation[J].Advanced Functional Materials, 2013, 23(7):878-884.
    [4] Soltani T, Entezari M H. Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of Rhodamine B under solar light irradiation[J]. Chemical Engineering Journal, 2013, 223:145-154.
    [5] Wang M, Guo P, Chai T, et al. Effects of Cu dopants on the structures and photocatalytic performance of cocoon-like Cu-BiVO4 prepared via ethylene glycol solvothermal method[J]. Journal of Alloys and Compounds, 2017, 691:8-14.
    [6] Zhang A, Zhang J. Effects of europium doping on the photocatalytic behavior of BiVO4[J]. Journal of Hazardous Materials, 2010,173(1/2/3):265-272.
    [7] Liu Renyue(刘仁月), Wu Zhen(吴榛), Bai Yu(白羽), et al.Preparation, characterization and photocatalytic mechanism of Ag2CO3/BiVO4 composite microsheets[J]. Nonferrous Metals Science and Engineering(有色金属科学与工程), 2016, 7(6):62-72.
    [8] Li H, Zhang J, Huang G, et al. Hydrothermal synthesis and enhanced photocatalytic activity of hierarchical flower-like Fe-doped BiVO4[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(4):868-875.
    [9] Wang M, Yang G, You M, et al. Effects of Ni doping contents on photocatalytic activity of B-BiVO4 synthesized through sol-gel and impregnation two-step method[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(9):2022-2030.
    [10] Shang Yi(尚义), Niu Fujun(牛富军), Shen Shaohua(沈少华).Photocatalytic water oxidation over BiVO4 with interface energetics engineered by Co and Ni-metallated dicyanamides[J]. Chinese Journal of Catalysis(催化学报), 2018, 39(3):502-509.
    [11] Moscow S, Jothivenkatachalam K. Facile microwave assisted synthesis of floral-shaped BiVO4 nano particles for their photocatalytic and photoelectrochemical performances[J]. Journal of Materials Science:Materials in Electronics, 2016, 27(2):1433-1443.
    [12] Jiang Haiyan(蒋海燕), Dai Hongxing(戴洪兴), Meng Xue(孟雪),et al. Morphology-dependent photocatalytic performance of monoclinic BiVO4 for methyl orange degradation under visible-light irradiation[J]. Chinese Journal of Catalysis(催化学报), 2011, 32(6):939-949
    [13] Wang L, Gu X, Zhao Y, et al. Enhanced photoelectrochemical performance by doping Mo into BiVO4 lattice[J]. Journal of Materials Science-Materials in Electronics, 2018, 29(22):19278-19286.
    [14] Suo Jing(索静), Liu Lifen(柳丽芬), Yang Fenglin(杨凤林).Preparation of supported Cu-BiVO4 photocatalyst and its application in oxidative removal of toluene in air[J]. Chinese Journal of Catalysis(催化学报), 2009, 30(4):323-327.
    [15] Kim K, Moon J H. Three-dimensional bicontinuous BiVO4/ZnO photoanodes for high solar water-splitting performance at low bias potential[J]. ACS Applied Materials&Interfaces, 2018, 10(40):34238-34244.
    [16] Liu Qiongjun(刘琼君), Lin Bizhou(林碧洲), Li Peipei(李培培), et al. Preparation of BiPO4/BiVO4 composites with high visible-light photocatalytic activity[J]. Chemical Research in Chinese Universities(高等学校化学研究), 2017, 38(1):94-100.
    [17] Guan M, Ma D, Hu S, et al. From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres:Controlled synthesis and enhanced visible-light-responsive photocatalytic properties[J]. Inorganic Chemistry, 2011, 50(3):800.
    [18] Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. Bi VO4/CeO2nanocomposites with high visible-light-induced photocatalytic activity[J]. ACS Applied Materials&Interfaces, 2012, 4(7):3718-3723.
    [19] Li J, Cui M, Guo Z, et al. Preparation of p–n junction BiVO4/Ag2O heterogeneous nanostructures with enhanced visible-light photocatalytic activity[J]. Materials Letters, 2015, 151:75-78.
    [20] Trzcinski K, Szkoda M, Sawczak M, et al. Visible visible light activity of pulsed layer deposited BiVO4/MnO2 films decorated with gold nanoparticles:The evidence for hydroxyl radicals formation[J].Applied Surface Science, 2016, 385:199-208.
    [21] Qin M, Zhao H, Yang W, et al. A facile one-pot synthesis of three-dimensional microflowerbirnessite(delta-MnO2)and its efficient oxidative degradation of rhodamine B[J]. RSC Advances,2016, 6(28):23905-23912.
    [22] Xue M, Huang L, Wang J Q, et al. The direct synthesis of mesoporous structured Mn O2/Ti O2 nanocomposite:A novel visible-light active photocatalyst with large pore size[J]. Nanotechnology, 2008, 19(18):185604.
    [23] Wang L, Wang W, Huang X, et al. Preparation of p–n junction Cu2O/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity[J]. Applied Catalysis B:Environmental, 2013,134/135:293-301.
    [24] Wang Y, Sun H, Ang H M, et al. 3D-hierarchically structured MnO2for catalytic oxidation of phenol solutions by activation of peroxymonosulfate:Structure dependence and mechanism[J].Applied Catalysis B-Environmental, 2015, 164:159-167.
    [25] Xiao W, Wang D, Lou X W. Shape-controlled synthesis of MnO2nanostructures with enhanced electrocatalytic activity for oxygen reduction[J]. Journal of Physical Chemistry C, 2009, 114(3):1430-1434.
    [26] He Y, Jiang D B, Chen J, et al. Synthesis of MnO2 nanosheets on montmorillonite for oxidative degradation and adsorption of methylene blue[J]. Journal of Colloid and Interface Science, 2018,510:207-220.
    [27] Zhang Y X, Huang M, Li F, et al. One-pot synthesis of hierarchical MnO2-modified diatomites for electrochemical capacitor electrodes[J]. Journal of Power Sources, 2014, 246:449-456.
    [28] Zhai Y, Yin Y, Liu X, et al. Novel magnetically separable BiVO4/Fe3O4 photocatalyst:Synthesis and photocatalytic performance under visible-light irradiation[J]. Materials Research Bulletin, 2017, 89:297-306.
    [29] Kumar N, Sen A, Rajendran K, et al. Morphology and phase tuning ofα-andβ-MnO2 nanocacti evolved at varying modes of acid count for their well-coordinated energy storage and visible-light-driven photocatalytic behaviour[J]. Rsc Advances, 2017, 7(40):25041-25053.
    [30] Liu Y, Chen Z, Shek C, et al. Hierarchical mesoporous MnO2superstructures synthesized by soft-interface method and their catalytic performances[J]. ACS Applied Materials&Interfaces,2014, 6(12):9776-9784.
    [31] Zhang Yu(张宇), Wang Min(王敏), Zhou Xin(周鑫), et al.Synthesis and efficient visible light photocatalytic activity of AgVO3/BiVO4 composite photocatalysts[J]. Journal of the Chinese Ceramic Society(硅酸盐学报), 2019,(1):125-131.
    [32] Wang M, Niu C, Liu Q, et al. Enhanced photo-degradation methyl orange by N-F co-doped BiVO4 synthesized by sol-gel method[J].Materials Science in Semiconductor Processing, 2014, 25(S1):271-278.
    [33] Liu S, Liu H, Jin G, et al. Preparation of a novel flower-like MnO2/BiOI composite with highly enhanced adsorption and photocatalytic activity[J]. RSC Advances, 2015, 5(57):45646-45653.
    [34] Sutthiumporn K, Kawi S. Promotional effect of alkaline earth over Ni-La2O3 catalyst for CO2 reforming of CH4:Role of surface oxygen species on H2 production and carbon suppression[J]. International Journal of Hydrogen Energy, 2011, 36(22):14435-14446.
    [35] Hang S, Xu K, Huang M, et al. One-pot synthesis of ultrathin manganese dioxide nanosheets and their efficient oxidative degradation of Rhodamine B[J]. Applied Surface Science, 2015, 357:69-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700