用户名: 密码: 验证码:
菊花光合作用对高温胁迫的响应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以生产上的主导白色切花菊品种‘神马’(Dendranthema grandiflora‘Jinba’)为试材,在33/28℃与40/35℃两种高温条件下分别进行不同时间的胁迫处理,从菊花对高温胁迫的光合响应、叶绿素荧光动力学参数变化及菊花叶片过氧化防御系统对高温胁迫的响应等方面,研究了菊花光合作用对高温胁迫响应的生理机制;通过不同高温胁迫强度处理后的恢复生长,进一步研究了高温胁迫对菊花光合作用及光合系统活性的影响。在此基础上,研究了外源Ca2+对高温胁迫下菊花各相关生理指标的动态变化,探讨了Ca2+对菊花抗氧化酶活性的影响及其与抗高温胁迫的关系,旨在为Ca2+在实际生产中的应用提供理论基础。主要研究结果如下:
     1.光合机构运转遭受的破坏与高温胁迫强度呈明显正相关。在40/35℃高温胁迫下,净光合速率(Pn)与气孔导度(Gs)大幅度持续降低。胁迫前期,胞间二氧化碳浓度(Ci)上升,表明高温下菊花叶片Pn的降低主要是由非气孔因素导致的;9 d后Ci与Pn同时降低,气孔限制成为光合作用降低的主要因素。33/28℃胁迫初期Pn逐渐降低,Gs无明显变化,但胁迫后期也表现出明显的气孔性限制,表明短期的亚高温不会致使气孔的关闭,但长期处于亚高温下,光合作用同样会遭受严重影响。
     2.随胁迫时间的延长,光饱和点(LSP)、光合能力(Pm)和表观量子效率(AQY)、羧化效率(CE)均明显降低,而光补偿点(LCP)、CO2补偿点(CCP)均明显升高,表明菊花叶片利用强光与弱光的能力降低,1,5-二磷酸核酮糖羧化/加氧酶(Rubisco)活性以及利用低浓度CO2的能力降低。叶绿素、胡萝卜素含量均在高温下逐渐降低,是光合速率降低的主要原因之一。低强度高温胁迫下菊花植株形态上表现出叶缘反卷、下位叶下垂等现象;高强度胁迫下,出现下位叶片枯萎、生长点坏死等症状。
     3.高温使菊花叶片的PSⅡ潜在活性(Fv/Fo)、最大光化效率(Fv/Fm)、实际光化效率(ΦPSⅡ)与天线转换效率(Fv’/Fm’)降低,天线热耗散(D)增加,表明高温下菊花通过降低光能的捕获与通过PSⅡ的电子传递效率来保护反应中心免受伤害。33/28℃条件下光化学猝灭系数(qP)呈先下降后上升的趋势,推测此温度下受体端电子传递首先受到抑制;40/35℃下qP持续增加,表明放氧复合体(OEC)可能是菊花光合系统中极端高温伤害的原初位点。
     4.短期33/28℃高温胁迫下抗氧化酶均表现出先上升后下降的趋势,但40/35℃下只有超氧化物歧化酶(SOD)与抗坏血酸过氧化物酶(APX)有小幅度的上升然后快速下降,过氧化氢酶(CAT)与过氧化物酶(POD)表现持续降低;菊花叶片中抗氧化物AsA与GSH对高温敏感,在两种高温强度下均出现持续降低的趋势。随胁迫时间的延长,膜脂过氧化逐渐加剧,MDA大量积累,细胞渗漏逐渐增加。
     5. 33/28℃亚高温下胁迫时间短于7 d的处理在转入23/18℃后Pn、Fv/Fm、ΦPSⅡ等指标均可在5 d内得到恢复,7 d以上的处理各参数也可在5d后恢复到处理前的70%以上;40/35℃高温下,5 d以上的处理都不能完全恢复,超过9d的处理Pn在恢复条件下继续降低,光合系统出现不可逆失活。
     6.高温胁迫下外源Ca2+降低了菊花叶片叶绿素a、b和类胡萝卜素的降低幅度, Pn、Fv/Fm、ΦPSⅡ均比对照有不同程度的增加,而Fo降低,表明Ca2+可以有效缓解短期高温对菊花光合系统的伤害,可能是由于降低了高温对PSⅡ反应中心的破坏或失活。另外,外源Ca2+明显激活了高温胁迫下叶片SOD、POD、CAT的活性,降低了高温胁迫对细胞膜结构的损伤与MDA的积累。
In the present studies, Seedlings of a white cut chrysanthemum cultivar‘Jinba’(Dendranthema grandiflora‘Jinba’) were treated by extreme high temperature (40/35℃) or sub-high temperature (33/28℃) for different time respectively to study effects of high temperature stress on both operation of photosynthesis organization and physiological response in chrysanthemum plants. Net photosynthesis rate, gas exchange, chlorophyll fluorescence and the response of active oxygen scavenging enzyme system to high temperature were detect as the main indexes. Through the study on recovery of chrysanthemum seedlings after different menace dosage, the possible response mechanism of high temperature on photosynthesis and activities of light system were discussed. In addition, the effects of exogenous Ca2+ on photosynthetic organization and active oxygen scavenging enzyme system as well as relation with high temperature in chrysanthemum plants were explored in the aim of providing alternative method for chrysanthemum growers. The main results of this study are as follows:
     1. The net photosynthesis rate (Pn) of chrysanthemum decreased gradually treated by 33/28℃, stomatal conductance (Gs) decreased evidently at 5th day; Pn and Gs decreased dramatically in plants treated by 40/35℃. Rise of intercellular CO2 concentration (Ci) at early stage under the given high temperatures showed that the inhibition of photosynthesis by high temperature stress was resulted from nonstomatal limitations, 9 days later, stomatal limitation mainly induced the decrease of Pn.
     2. With the prolonging of the high temperature stress, light saturation point (LSP ) , max Pn (Pm), apparent quantum yield (AQY) and corboxylation efficiency (CE) evidently all decreased; meanwhile, both CO2 compensation point (CCP) and light compensation point (LCP) increased. The result showed that the capabilities of chrysanthemum seedling to use weak light and high intensive light were lower than the control. The activity of Rubisco and the capability of using lower concentration of CO2 were lower too. Decreased of contents of chlorophyll and carotenoid under high temperature stress maybe is one mainly cause resulting in the reducing of Pn. Middle leaf is revolute and lowest leaves drooped under lower high temperature dosage; middle leaves drooped with yellow spot and lowest leaves perished under high stress dosage.
     3. The intrinsic photochemical efficiency (Fv/Fm), quantum yield of PSⅡ(ΦPSⅡ),the efficiency of excitation energy capture by open PSⅡreaction center(Fv’/Fm’)of plants that were treated by 33/28℃and 40/35℃all decreased with antenna heat dissipation increasing,showed that react center were protected by decreased light capture and efficiency of electron transfer through PSⅡ. Photochemical quenching (qP) of plants under 33/28℃descended first and then turned to rise, suggested that the electron transfer was firstly restrained by the stress; contrastively, qP rise continuously under 40/35℃, indicating oxygen-evolving complex (OEC) was the most sensitive location to extreme high temperature in chrysanthemum photosynthesis apparatus.
     4. All the antioxidation enzymes of SOD, POD, CAT, APX was activised by Short-term 33/28℃, SOD and APX raised slightly under 40/35℃, with the durative reduce of CAT and POD;antioxidation matter AsA and GSH are both sensitive to high temperature stress,appeared durative reduce under given two high temperature intensity. With the prolonging of stress, membrane lipid peroxidization prick up, following MDA accumulation and cell leakage increasing.
     5. Pn、Fv/Fm、ΦPSⅡof chrysanthemum leaves treated by 33/28℃within 7 d could recovered after transfer to 23/18℃; the above parameters could recovered to 70% of control treated beyond 7 d; contrastly, the photosynthesis of chrysanthemum leaves treated by 40/35℃beyond 5 d can not recovery , that treated beyond 9 d even keep on reducing transfer to control condition, light react center is permanent injured.
     6. Additions of exogenous Ca2+ significantly enhanced the contents of chlorophyll a, chlorophyll b and carotenoid of chrysanthemum leaves under high temperature stress. All of net photosynthetic rate (Pn), photochemical efficiency of PSⅡ(Fv/Fm) and quantum yield of PSⅡelectron transport (ΦPSⅡ) increased, whereas initial fluorescence (Fo) decreased. Ca2+ treatment significantly enhanced the activities of SOD, POD and CAT. In conclusion, addition of Ca2+ efficiently protected chrysanthemum leaves against photosynthetic organization damage under high temperature stress conditions, and the active oxygen was scavenged by the enhanced antioxidant enzymes, which hence significantly alleviated the membrane lipid peroxidization and MDA accumulation.
引文
1.艾希珍.日光温室黄瓜不同叶位叶片光合作用研究.中国农业科学, 2002, 35(12): 1519-1524
    2.陈锋,田纪春,孟庆伟等.短期高温胁迫对高产小麦品系灌浆后期旗叶光系统Ⅱ功能的影响.应用生态学报, 2006, 17(10): 1854-1858
    3.陈林,日本切花菊市场调查分析.农业工程技术?温室园艺, 2005, 3: 17-21
    4.陈华新,安沙舟,李卫军等. NaCI胁迫增强杂交酸模(Rumex K.1)幼苗叶片光系统Ⅱ的耐热性.植物生理与分子生物学学报, 2004, 30(3): 345-350
    5.陈洪国.植物生长调节剂对菊花幼苗生长及光合作用的影响.安徽农业科学2006, 34(9): 1852-1854
    6.陈贻竹,李晓萍,夏丽等.叶绿素荧光技术在植物环境胁迫研究中的应用.热带亚热带植物学报, 1995, 3(4): 79-86
    7.董彩霞,赵世杰.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参数的影响.作物学报, 2002, 28(1): 59-64
    8.杜永臣.园艺作物高温逆境生理的研究进展.园艺学年评, 1996, 2: 1-14
    9.樊传辉,孙广玉,吕清友.光胁迫下烤烟幼苗叶片光抑制及Ca2+的缓解作用.东北林业大学学报, 2007, 35(6): 34-36
    10.冯建灿,胡秀丽,毛讯甲.叶绿素荧光动力学在研究植物逆境生理中的应用.经济林研究, 2002, 20(4):14-1
    11.冯建灿,毛训甲,胡秀丽.光氧化胁迫条件下叶绿体中活性氧的产生、清除及防御.西北植物学报, 2005, 25(7 ): 1487-1498
    12.付振书,赵世杰,孟庆伟等.高温强光下耐热性不同的两个甘蓝品种幼苗光合作用差异的研究.园艺学报, 2005, 31(5): 666-667
    13.高向阳,杨根平,许志强等.水分胁迫下钙对大豆膜脂过氧化保护酶系统的影响.华南农业大学学报, 1999, 20(2): 7-12.
    14.郭培国,陈建军.氮素形态对烤烟光合特性影响的研究.植物学通报, 1999, 16(3): 262-267
    15.郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响.植物学报, 2000, 42(7): 673-678
    16.郭天财,冯伟,赵会杰等.两种穗型冬小麦品种旗叶光合特性及氮素调控效应.作物学报, 2004, 30(2): 115-121
    17.郭延平,陈屏昭,张良诚等.缺磷胁迫加重柑橘叶片光合作用的光抑制及叶黄素循环的作用.植物营养与肥料学报, 2003, 9(3): 359-363
    18.郭延平,周慧芬,曾光辉等.高温胁迫对柑橘光合速率和光系统Ⅱ活性的影响.应用生态学报, 2003, 14(6): 867-870
    19.侯兴亮,李景富,许向阳.番茄耐弱光性的研究进展.中国蔬菜, 1999, (4): 48-50
    20.华春,王仁雷,刘友良.外源AsA对盐胁迫下水稻叶绿体活性氧清除系统的影响作物学报, 2004, 30(7): 692-696
    21.姜闯道,高辉远,邹琦.类囊体pH梯度在光抑制中的保护机理.植物生理学通讯, 2000, 38(4): 307-312
    22.姜述君,强胜.马唐生.防菌画眉草弯孢霉毒素α,β-dehydrocurvularin对马唐叶片PSⅡ功能的影响.中国农业科学, 2005, 38 (7): 1373-1378
    23.金彩霞,刘晓冰,宋春雨.高温胁迫下光合器官受损及其适应机理.农业系统科学与综合研究, 2002, 18 (4): 252-256
    24.李朝霞等.光呼吸途径及其功能.植物学通报, 2003, 20: 190-197
    25.李合生.植物生理生化试验原理与技术.北京:北京高等教育出版社. 2000
    26.李美如,刘鸿先,王以柔等.钙对水稻幼苗抗冷性的影响.植物生理学报, 1996, 22(4): 379- 384
    27.李雪芹,徐礼根,金松恒等. 4种草坪草叶绿素荧光特性的比较.园艺学报, 2006, 33(1): 164-167
    28.娄义龙,高嘉麟,田应生等.唐菖蒲、月季、菊花、香石竹的光合特性和叶表特征研究.园艺学报, 1998, 25 (3) : 280-286
    29.梁建萍,牛远,谢敬斯等.不同海拔华北落叶松针叶三种抗氧化酶活性与光合色素含量.应用生态学报, 2007, 18 (7): 1414-1419
    30.廖建雄,王根轩.干旱、CO2和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响.应用生态学报, 2002, 13(5): 547-550
    31.林世青,许春辉,张其德等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的作用.植物学通报, 1992, 9 (1): 1-16
    32.刘琴,孙辉,何道文.干旱和高温对植物胁迫效应的研究进展.西华师范大学学报(自然科学版) , 2005, 364-368
    33.刘霞,尹燕枰,姜春明等.花后不同时期弱光合高温胁迫对小麦旗叶荧光特性及籽粒灌浆进程的影响.应用生态学报, 2005, 16 (11): 2117-2121
    34.刘东焕,赵世伟,高荣孚等.植物光合作用对高温的响应.植物研究, 2002, 22( 2): 205- 212
    35.刘艳,黄乔乔,马博英等.高温干旱胁迫下香根草光合特性等生理指标的变化,林业科学研究, 2006, 19(5): 638-642
    36.卢少云,黎用朝,郭振飞等.钙提高水稻幼苗抗旱性的研究.中国水稻科学, 1999, 13(3): 161-164
    37.马德华.高温对黄瓜幼苗膜脂过氧化作用的影响.西北植物学报, 2000, 20 (1):141-144
    38.马德华.温度逆境对不同品种黄瓜幼苗膜保护系统的影响.西北植物学报, 2001, 21(4): 656-666
    39.孟凡珍,张振贤,于贤昌等.不同季节生态型大白菜光合作用对夏季高温强光的响应.应用与环境生物学报, 2002, 8(6): 605-609
    40.穆鼎.切花菊.太原:陕西科学技术出版社, 1999
    41.欧志英,彭长连,林桂珠.超高产水稻培矮64SPE32及其亲本叶片的光氧化特性和遗传特点.作物学报, 2004, 30 (4): 308-314
    42.潘宝贵,王述彬,刘金兵等.高温胁迫对不同辣椒品种苗期光合作用的影响.江苏农业学报, 2006, 22(2): 137-140
    43.苏冬梅,廖飞勇. SO2对菊花光合色素含量和叶绿素荧光特性的影响.中南林学院学报,2005,25(6): 70-74
    44.孙谷畴,赵平.亚热带森林四种建群树种叶片叶肉导度对适度高温的响应.应用生态学报. 2007, 18 (6): 1187-1193
    45.孙宪芝,郑成淑,王秀峰.木本植物抗旱机理研究进展.西北植物学报, 2007, 27(3): 629-634
    46.孙学成,谭启玲,胡承孝等.低温胁迫下钼对冬小麦抗氧化酶活性的影响.中国农业科学, 2006, 39 (5): 952-959
    47.孙艳,樊爱丽,徐伟君.草酸对高温胁迫下黄瓜幼苗叶片光合机构和叶黄素循环的影响中国农业科学,
    48.孙艳,徐伟君,范爱丽.高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响.应用生态学报, 2006, 17 (3): 399-40
    49.童贯和.不同供钾水平对小麦旗叶光合速率日变化的影响.植物生态学报, 2004, 28 (4): 547- 553
    50.汪炳良,徐敏,史庆华等.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响.中国农业科学, 2004, 37 (8): 1245-1250
    51.汪月霞,孙国荣,王建波等. NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系.生态学报, 2006, 26 (1) : 122-129
    52.王晨阳,郭天财,阎耀礼等.花后短期高温胁迫对小麦叶片光合性能的影响.作物学报, 2004, 30 (1): 88-91
    53.王晨阳,朱云集,夏国军等.后期高温条件下小麦旗叶光合参数的变化及其相关性分析.华北农学报, 2003, 18(3): 8-11
    54.王凤兰,周厚高,黄玉源等. 4个新铁炮百合品系幼苗的抗热指标测定.仲恺农业技术学院学报, 2003, 16 (2): 38-42
    55.王梅,高志奎,黄瑞虹等.茄子光系统Ⅱ的热胁迫特性.应用生态学报, 2007,18(1): 63-68
    56.吴国胜,曹婉虹,王永健等.细胞膜热稳定性及保护每和大白菜耐热性的关系,园艺学报, 1995, 22(4): 353-358
    57.吴韩英,寿森炎,朱祝军等.高温胁迫对甜椒光合作用和叶绿素荧光的影响.园艺学报, 2001, 28(6): 517-521
    58.武维华.植物生理学.北京:科学出版社, 2003
    59.徐胜,李建龙,何兴元等.冷季型草坪草对高温胁迫的生理生态适应机理研究进展.生态学杂志, 2006, 25 (6): 698-702
    60.徐志防,罗广华,柯德森等.超氧阴离子诱导的叶绿素荧光猝灭.生物化学与生物物理进展, 2002, 29 (1) : 139-143
    61.许大全,李德耀,沈允刚等.田间小麦叶片光合作用“午睡”现象研究.植物生理学报, 1984, 10: 269-276
    62.许大全.光合作用“午睡”现象的生态、生理与生化.植物生理学通讯, 1990 (6): 5-10
    63.许大全,张玉忠,张荣铣.植物光合作用的光抑制.植物生理学通讯, 1992, 28(4): 237- 243
    64.许大全.光合作用效率.上海:上海科学技术出版社, 2002
    65.许大全.气孔的非均匀关闭与光合作用的非气孔限制.植物生理学通讯, 1995, 31 (4): 246
    66.晏斌,戴秋杰,刘晓忠等.钙提高水稻耐盐性的研究.作物学报, 1995, 21: 55-57.
    67.杨胜铭,高辉远,邹琦.状态转换对光合作用中激发能分配的调节及其与光破坏防御的关系.植物生理学通讯, 2001, 37(2): 89-94
    68.叶梁,邹琦.光温交叉胁迫对菜豆幼苗叶黄素循环启动的影响.植物生理学通讯, 1998 , 34(2 ): 88-91
    69.于晓英,卢向阳,李向婷等.热锻炼对瓜叶菊幼苗高温胁迫下生理生化特性的影响.江苏农业学报, 2006, 22(2): 186-188
    70.云建英,杨甲定,赵哈林.干旱和高温对植物光合作用的影响机制研究进展.西北植物学报, 2006, 3: 209-216
    71.宰学明,钦佩,吴国荣等.外源钙对高温胁迫下花生幼苗叶绿体Ca2+-ATPase、Mg2+- ATPase活性及Ca2+分布的影响.中国油料作物学报, 2005, 27(4): 41-44
    72.张洁,李天来.短时间亚高温处理及其恢复对番茄光合特性的影响.农业工程学报, 2007, 23(1): 162-167
    73.张洁,李天来.日光温室亚高温对番茄光合作用及叶绿体超微结构的影响.园艺学报, 2005, 32(4): 614-619
    74.张燕,李天飞,方力等.钙对高温胁迫下烟草幼苗抗氧化代谢的影响.生命科学研究2002, 6(4): 356-361
    75.张乃华,高辉远,邹琦. Ca2+缓解NaCl胁迫引起的玉米光合能力下降的作用.植物生态学报, 2005, 29 (2): 324-330
    76.张荣铣,高忠.小麦品种和品种间叶片展开后光合特性的差异及其机理.《作物高产高效生理研究进展》邹琦主编,科学出版社,北京, 1994
    77.张施君,周厚高,潘文华等.新铁炮百合的耐热性生理初步研究.园艺学进展(第五辑)雷建军主编.广州:广州出版社, 2002. 665-669
    78.张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报, 1999, 16(4): 444-448
    79.张往祥,曹福亮.高温期间水分对银杏光合作用和光化学效率的影响.林业科学研究, 2002, 15 (6): 672-679
    80.张旺锋,勾玲,王振林等.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响.中国农业科学, 2003, 36: 893-898
    81.张英华,王志敏.小麦籽粒生长期热效应研究.中国生态农业学报, 2006, 3(14): 8-11
    82.张宗申,利容千,王建波.外源Ca2+、La3+和EGTA处理对辣椒叶片热激反应的影响.武汉大学学报, 2000, 6(2): 253-256
    83.张宗申,利容千,王建波.外源Ca2+预处理对高温胁迫下辣椒叶片细胞膜透性和GSH、AsA含量及Ca2+分布的影响.植物生态学报, 2001, 25(2): 230-234
    84.赵可夫,王韶唐.作物抗逆生理.北京:农业出版社, 1990, 120-144
    85.周海燕,赵世杰,孟庆伟.高等植物光系统Ⅱ对高温的响应.生物技术通报, 2006,184(5): 8-12
    86.周斯建,义鸣放,穆鼎.高温胁迫下铁炮百合幼苗形态及生理反应的初步研究.园艺学报, 2005, 32 (1): 145-147
    87. Abdul MK, Hiroshi F, Tetsushi H. Photosynthetic performance of Vigna radiate L.leaves developed at different temperature and irradiance leaves. Plant Science, 2003, 164: 451-458
    88. Abdul MK, Simon P. Spectral filters and temperature effects on growth and development of chrysanthemum under low light integral. Plant Growth Regulation, 2006, 49: 61-68
    89. Akio Uchida, Andre T. Jagendorf, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 2002, 163: 515-523.
    90. Anderson J. Mecollnm G, Robert, W. High temperature acclimation in peller leaves, Hortscience, 1990, 25(10): 1272-1274
    91. Aphalo PJ, Jarvis PG. Do stomata respond to relative humidity? Plant Cell Env., 1991, 14: 127-132.
    92. Arakawa N, Tsutsumik, Sancedanc, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7 dipheny 1,1, 10-phenanthroline. Agric Biol Chem, 1981, 45: 1289-1290
    93. Arquhar GD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317
    94. Asada K, Mano J. Molecular mechanisms of relaxation and protection from light stress. Elsvier Science BV, 1998: 37-52
    95. Asada K. Production and scavenging of active oxygen in chloroplasts // Scandalios JG, ed. Molecular Biology of Free Radical Scavenging Systems. New York: CSHL Press, 1992: 173-192
    96. Asada K. Production and scavenging of active oxygen in photosynthesis. Elsevier, Amsterdam, London and New York, 1987: 227-287
    97. Asada K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review Plant Physiology and Plant Molecular Biology, 1999, 50: 601-639
    98. Badger MR, Armond PA. An analysis of photosynthetic response and adaptation to temperature in higher plants: temperature acclimation in the desert evergreen Nerium oleander L. Plant, Cell and Environment, 1982, 5: 85-99
    99. Baker NR. Possible role of photosystemⅡin environmental perturbations of photosynthesis. Plant Physiology, 1991, 81: 563-570
    100. Banzet N, Deveaux Y. Accumulation of small heat shock proteins, including mitochondrial Hsp22, induced by oxidative stress and adaptive response in tomato cells. Plant Journal, 1998, 13: 519-527
    101. Bassi R, Pineau B, Dainese P, et al. Carotenoid-binding proteins of photosystemⅡ. Eur J Biochem, 1993, 212: 297-303
    102. Berry JA, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 1980, 31: 491-543
    103. Bilger W, Fisahn J, Brummet W, et al. Violaxanthin cycle pigment contents in potato and tobacco plants with genetically reduced photosynthetic capacity. Plant Physiology, 1995, 108: 1479-1486
    104. Blubaugh DJ. The molecular mechanism of bicarbonate effect at the plastoquinone reductase site of photosynthesis. Photosynthesis Research, 1988, 19: 85-128
    105. Boucher N, Carpentier R. Heat-stimulation of electron flow in a photosystem I submembrane. Biochemistry and Cell Biology-Biochimie et Biologie Cellulaire, 1990, 68: 1000-1004
    106. Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83-116
    107. Broertjes C, Lock CAM. Radiation-induced low-temperature tolerant solid mutants of Chrysanthemum morifolium Ram. Euphytica, 1985, 34: 97-103
    108. Bukhov NG, Mohant P. Analysis of chlorophyll a fluorescence changes in weak light in heat treated Amaranthus chloroplasts. Photosynthesis Research, 1990, 23: 81-87
    109. Bukhov NG, Neimanis S. Heat-sensitivity of chloroplasts and leaves: Leakage of protons from thylakoids and revesible activation of cyclic electron transport. Photosynthesis Research, 1994, 59: 81-93
    110. Cao J. Chlorophyll a fluorescence transient as an indicator of active and inactive photosystemⅡin thylakoid membranes. Biochim Biophys. Acta, 1990, 1015: 180-188
    111. Cathey, HM, Chrysanthemum temperature study. C. The effect of night, day and mean temperature upon the flowering of chrysanthemum morifolium. Proc. of the Amer. Soc. of Hort. Sci. 1957, 64: 499-502.
    112. Chen HX, Li WJ, An SZ, et al. Dissipation of excess energy in Mehler-peroxidase reaction in Rumex leaves during salt shock. Photosynthetica, 2004, 42: 117-122
    113. Cheniae GM. Site and function of manganese within PSⅡ. Role in O2 evolution and systemⅡ. Biochim and Biophysica Acta, 1970, 197: 219-239
    114. Choudhury NK, Behera RK. Photoinhibition of Photosynthesis: Role of Carotenoids in Photoprotection of Chloroplast Constituents. Photosynthetica, 2001,39:481-488
    115. Coca MA, Thomas TL. Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter. Plant Molecular Biology, 1996, 31: 863-876
    116. Cockshull KE, Kofranek AM. High temperatures delay flowering, produce abnormal flowers, and retard stem growth of cut-flower chrysanthemum. Scientia Horticulturae, 1994, 56, 217-234
    117. Cornic G. Effects of temperature on net CO2 assimilation and PhotosystemⅡquantum yield of electron transfer of French bean leaves during drought stress. Planta, 1991, 185: 255-260
    118. Crafts-Brandner SJ, Law RD. Effects of heat stress on the inhibition and recovery of ribulose-1,5-bisphosphate carboxylase/ oxygenase activation state. Planta, 2000, 212: 67-73
    119. Dai Z, Ku MSB, Control of photosynthesis and stomatal conductance in Ricinus communis L. (castor bean)by leaf to air vapor pressure deficit. Plant Physiology, 1992, 99: 1426-1434
    120. Dat J, Foyer C, Scott I. Changes in salicylic acid and antioxidants during induced thermo tolerance in mustard seedlings. Plant Physiology, 1998, 118: 1455-1461
    121. Dat J, Scott I. Changes in salicylic acid and antioxidants during induced thermo tolerance in mustard seedlings. Plant Physiology, 1998, 118: 1455-1461
    122. David C, Fork. The control by state transitions of the distributions of excitation energy in photosynthesis. Annu Rev Plant Physiol, 1986, 37: 335-361
    123. David MM, Coelho D, Barrote I, et al. Leaf age effects on photosynthetic activity and sugar accumulation in droughted and rewatered Lupinus albusplants. Australian Journal of Plant Physiology, 1998, 25: 299-306
    124. De L, Barber J. Structure and thermal stability of PSⅡreaction centers studied by infrared spectroscopy. Biochemistry, 1997, 36: 8897-8903
    125. Demmig B, Winter K, Kruger A. Photoinhibition and zeaxanthin formation in intact leaves:A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiology, 1987, 84: 218-224
    126. Demmig-Adams B, AdamsⅢWW. Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mole Biol, 1992, 43: 599-626
    127. Demmig-Adams B. Carotenoids and photoprotection in plants: A role for the xanthophylls zeaxanthin. Biochim and Biophysica Acta, 1990, 1020: 1-24
    128. Demmig-Adams B. Photoprotection and other responses of plantto high light stress. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 599-626
    129. Dieter P. Calmodulin and calmodulin-mediated progress in plants. Plant Cell and Environment, 1984, 7: 371-380
    130. Downton WJS, Grant WJR. Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. New Physiologist, 1988, 108: 263
    131. Eckardt NA. Heat denaturaton profiles of ribulose-1, 5-bisphosphate earboxylase/ oxygenase (Rubisco) and Rubisco activase and the inability of Rubisco activase to restore activity of heat-denaturated Rubisco. Plant Physiology, 1997, 113: 243-248
    132. Enami I, Kitamura M, Tomo T, et al. Is the primary cause of thermal in activation of oxygen evolution in spinach PSⅡmembranes release of the extrinsic 33 k Da protein or of Mn biochim? Biophys. Acta, 1994, 1186: 52-58
    133. Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317-345.
    134. Feller U, Salvucci ME. Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylaxe/oxygenase (Rubisco). Activase-mediated activation of Rubisco. Plant Physiology, 1998, 116: 539-546
    135. Foyer C, Kunert K. Protection against oxygen radicals: an important defence mechanisms studied in transgenic plants. Plant, Cell and Environment, 1994, 17: 507-523
    136. Foyer CH, Lelandais M, Kunert K J. Photooxidative stress in plants. Physiol Plant, 1994, 92(4): 696-717.
    137. Fryer MJ. Relationship between CO2 assimilation, photo-synthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physio1ogy, 1998, 116: 571-580
    138. Gechev T, Willekens H, Montagu M, et al. Different responses of tobacco antioxidant enzymes to light and chilling stress. Journal of Plant Physiology, 2003, 160: 509-515
    139. Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica Biophysica Acta, 1989, 990: 87-92.
    140. Giannopolitis CN, Ries SK. Superoxide dismutase I. occurrence in higher plants. Plant Physiology, 1977, 59: 309-314
    141. Gilmore AM. Zeaxanthin formation and energy dependent fluorescence quenching in pea chloroplasts under artificially-mediated linear and cyclic electron transport. Plant Physiology, 1991, 96: 635-643
    142. Goltsev V, Stoyanova T. High temperature damage and acclimation of the photosynthetic apparatusⅡ. Effect of mono-and divalent cations and pH on the temperature sensitivity of some functional characteristics of chloroplasts isolated from heat-acclimated and non-acclimated bean plants. Planta, 1987, 170: 478-488
    143. Gong M, Li YJ, Dai M, et al. Involvement of calciumand calmodulin in the acquisition of heat-shock induced thermo tolerance in maize. Plant Physiology, 1997, 150: 615-621
    144. Gounaris K Quinn PJ. Structural reorganization of chloroplast thylakoid membranes in response to heat stress. Biochim and Biophysica Acta, 1984, 766: 98-208
    145. Gruszecki WI. Does the xanthophyll cycle take part in the regulation of the thylakoid membrane. Biochim and Biophysica Acta, 1991, 1060: 310-314
    146. GuisséB, Srivastava A, Strasser RJ. The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. Archs Sci Genève, 1995, 48: 147-160
    147. Hahn EJ, Cho YR, Lee YB. Air temperature and relative humidity affect the growth of chrysanthemum plantlets in the microponic system. Journal of the Korean Society for Horticultural Science. 1998, 39(5): 625-628
    148. Hansson O, Wydrzynski T. Current perceptions of photosystemⅡ. Photosystem Research, 1990, 23: 1313-1362
    149. Hartl FU. Molecular chaperones in cellular protein folding. Nature, 1996, 381: 571-580
    150. Havaux M, Bonfils JP, Lütz C, et al. Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll-cycle enzyme violaxanthin deepoxidase. Plant Physiology, 2000, l124: 273-284
    151. Havaux M, Tardy F. Temperature-dependent adjustment of the thermal stability of photosystemⅡin vivo: possible involvement of xanthophyll-cycle pigments. Planta. 1996, 198: 324-333
    152. Havaux M. Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Science, 1993, 94: 19-33
    153. Havaux M. Comparison of atrazine-resistant and susceptible biotypes of Senecio vulgaris L. Effects of high and low temperatures on the in vivo photosynthetic electron transfer in intact leaves. Journal of Experimental of Botany, 1989, 40: 849-854
    154. Havaux M. Heat-and light-induced chlorophyll a fluorescence changes in potato leaves containing high or low levels of the carotenoid zeaxanthin: Indications of a regulatory effect of zeaxanthin on thylakoid membrane fluidity. Photochemistry and Photobiology, 1993, 58: 607-614
    155. Havaux M. Rapid photosynthetic adaptation to heat sress triggered in potato leaves by moderately elevated temperatures. Plant, Cell and Environment, 1993, 16: 461-467
    156. Havaux M. Short-term responses of PSⅠto heat stress. Photosynthesis Research, 1996, 47: 85-97
    157. Havaux M. Temperature sensitivity of the photochemical function of photosynthesis in potato (Solanum tuberosum) and a cultivated Andrean hybrid (Solanum Juzepez-ukii ). Journal of Plant Physiology, 1995, 146: 47-53
    158. Havaux M. Temperature-dependent modulation of the photo-inhibition-sensitivity of PSⅡin Solanum tuberosum leaves. Plant and Cell Physiology, 1994, 35: 757-766
    159. Heber U, Walker D. Concerning a dual action of coupled cyclic electron transport in leaves. Plant Physiology, 1992, 100(4): 1621-1626
    160. Heckathorn SA, Sharkey TD. The small, methionine-rich chloroplast heat-shock protein protects PSⅡelectron transport during heat stress. Plant Physiology, 1998, 116: 439-444
    161. Hikosaka K. Effects of leaf age, nitrogen nutrition andphoton flux density on the organization of thephotosynthetic apparatus in leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves. Planta, 1996, 198: 144-150
    162. Hong SS, Xu DQ. Light-induced increase in initial fluorescence parameters to strong light between wheat and soybean leaves. Chinese Science Bulletin, 1997, 42: 684-688
    163. Horton P, Walters R. Regulation of light harvesting in green plants. Indication by nonphotochemical quenching of chlorophyll fluorescence. Plant Physiology, 1994, 106: 415-420
    164. Horton P, Walters RG. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol.Plant mol. Biol, 1994, 47: 655-684
    165. Horton P. Regulation of PSⅡ. Photosynthesis Research, 1992, 34: 375-385
    166. Hu WH, Zhou YH, Du YS, et al. Differential response of photosynthesis in greenhouse-and field-ecotypes of tomato to long-term chilling under low light. Journal of Plant Physiology, 2006, 163: 1238-1246
    167. Inab AM. Electrolyte leakage as an indicator of high-temperature injury to harvested mature green tomatoes. Journal of the American Society for Horticultural Science, 1988, 113: 96-99
    168. Irving HR, Gehring CA, Parish RW. Changes in cytosolic pH and cacium of guard cells precede stomatal movements. Proceeding s of the National Academy of Sciences of the United States of Amecica, 1992, 89(5): 1790-1794
    169. Ivanov B, Kobayashi Y, Bukhov NG. Photosystem I-dependent cyclic electron flow in intact spinach chloroplasts:Occurrence, dependence on redox conditions and electron acceptors and inhibition by antimycin A. Photosynthesis Research, 1998, 57: 61-70
    170. James A Bunce. The temperaure dependence of the stimulation of photosynthesis by elevated carbon dioxide in wheat and barley. Journal of Experimental Botany, 1998, 49: 1555-1561
    171. Jansen LHJ, Hasselt PRV. Tenperature dependence of chlorophyll fluorescence induction and photosynthesis in tomato as affected by temperature and light conditions during growth. Journal of Plant Physiology, 1992, 139: 549-554
    172. Ji BH, Zhu SQ, Jiao DM. Photochemical efficiency of PSⅡand membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa) under chilling temperature and strong light stress conditions. Acta Botanica Sinica, 2002, 44(2): 139-146.
    173. Jong JD. Analysis of components controlling early flowering of chrysanthemum at low temperature. Euphytica, 1989, 40: 121-126
    174. Karlsson MG, Heins RD, Erwin JE, et al. Irradiance and temperature effects on time of development and flower size in chrysanthemum. Scientia Hort, 1989, 39: 257-267.
    175. Katoh S. Ascorbate-supported NADP photoreduction by heated Euglena chloroplasts. Archives of Biochemistry and Biophysics, 1967, 122: 144-152
    176. Kobayashi Y. Rates of vectorial proton transport supported by cyclic electron flow during oxygen reduction by illuminated intact chloroplasts. Photosynthesis Research, 1994, 41: 419-428
    177. Kobza J. Influence of leaf temperature on photosynthetic carbon metabolism in wheat. Plant Physiology, 1987, 83: 69-74
    178. Kobza J. Influences of leaf temperature on photosynthetic carbon metabolism in wheat. Plant Physiology, 1987, 83: 69-74
    179. Konka V, Roger M, Leblanc. Action spectra of photosystemsI andⅡin state 1 and state 2 in intact sugar maple leaves. Plant Physiology, 1994, 104: 120-214
    180. Krall JP, Edwards GE. Relationship between photosystemⅡactivity and CO2 fixation in leaves. Physiology Plant, 1992, 86: 180-187
    181. Kraus TE, Fletcher RA. Paclobutrazol protects wheat seedlings from heat and parquet injury. Is detoxification of active oxygen involved? Plant Cell Physiology, 1994, 35: 45-52
    182. Kuwabara, JS. Phosphorus-zinc interactive effects on growth by Selenastrum capricornutum (Chlorophyta). Environ. Sci. Technology, 1985, 19: 417-421
    183. Labate CA Leegood RC. Effects of temperature on photosynthetic carbon assimilation and contents of photosynthetic intermediates in leaves of maize and barley. Planta, 1990, 181: 547-554
    184. LePage I, DeJong J, Smeets L. Effect of day and night temperature during short photoperiods on growth and flowering of Chrysanthemum morifolium Ramat. Scientia Horticulturae, 1984, 22: 373-381
    185. Lewis H, James A Bunce. Increasing growth temperature reduces the stimulatory effect of elevated CO2 on photosynthesis or biomass in two perennial species. Physiologia Plantarum, 1994, 91: 183-190
    186. Lobell DB, Asner GP. Climate and management contributions to recent trends in US agricultural yields. Science, 2003, 299(14): 1032-1033
    187. Lu CM, Qiu NW, Lu QT. Does salt stress lead to increased susceptibility of photosystem to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaed asalsa grown out doors? Plant Science, 2002, 163: 1063-1068
    188. Lu CM, Zhang JH. Changes in photosystemⅡfunction during senescence of wheat leaves. Physiol Plantarum, 1998, 104: 239-247.
    189. Lu CM, Zhang JH. Heat-induced Multiple effects on PSⅡin wheat Plants. J Plant Physiol, 1999, 156: 259-265
    190. Mamedov M, Murata N. Effects of glycerine-betaine and unsaturation of membrane lipids on heat stability of photosynthetic electron transport acdphospho-rylation reactions in Synechocystis PCC6803. Biochimica and Biophysica Acta, 1993, 1142:1-5
    191. Mansfied TA, Atkinson CJ. Some current aspects of stomatal Physiology. Annual Review of Plant Physiology and Plant Molecular Biology, 1990, 41: 55
    192. McCain DC Markley JL. Thermal damage to chloroplast envelope membranes. Plant Physiology, 1989, 90: 606-609
    193. Michael S, Adams and mohammad M, Fayyaz. Temperature acclimation of net photosynthesis in relation to growth of a cold hardy chrysanthemum. Oecologia (Berl.), 1979, 39: 239-247.
    194. Minorsky PV. An heuristic hypothesis of chilling injury on plants. A role for calcium as the primary physiological transducer of injury. Plant Cell Environ, 1985, 8: 75-83.
    195. Monson RK, Williams GJ. Temperature dependence of photosynthesis in Agropyron smithii Rydb. Plant Physiology, 1982, 69: 921-928
    196. Moran JF, Becana M. Iturbe O, et al. Drought induces oxidative stress in pea plant. Planta, 1994, 194: 346-352
    197. Murata N. Control of excitation transfer in photosynthesis. IV. Kinetics of chlorophyll a fluorescence in Porphyra yezoensis. Biochim Biophys Acta, 1970, 205: 379-389
    198. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22: 867-880
    199. Nash D, Murata N. Heat inactivation of oxygen evolution in PhotosystemⅡparticles and its acceleration by chloride depletion and exogenous manganese. Biochim and Biophysica Acta, 1985, 807: 127-133
    200. Nash D. Heat inactivation of oxygen evolution in photosystemⅡparticles and its acceleration by chloride depletion and exogenous manganese. Biochim and Biophysica Acta, 1985, 807: 127-133
    201. Nishiyama Y, Hayashi H. Thermal protection of the oxygen-evolving machinery by PSbU, an extrinsic protein of photosystemⅡin Synecho-coc-cus species PCC 7002. Plant Physiology, 1997, 115: 473-1480
    202. Niyogi KK. Photoprotection revisited: Genetic and molecular approaches. Annual Review Plant Physiology and Plant Molecular Biology, 1999, 50: 333-359
    203. Nover L, Neumann D. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Molecular and Cellular Biology, 1983, 03: 1648-1655
    204. Ort DR,Baker NR, et a1. A photoprotective role for O2 as an electron sink in photosynthesis? Current Opinion in Plant Biology, 2002(5): 193-198
    205. Osmond C B, Grace SC. Perspectives on photoinhibition and photorespiration in the field: quintessential in efficiencies of the light and dark reactions of photosynthesis? J Exp Bot, 1995, 46: 1351-1362
    206. Osmond CB. Photorespiration and photoinhibition, some implications for the energitics of photosynthesis. Biochim and Biophysica Acta, 1981, 639: 77
    207. Ourisson G. Bacterial carotenoids as membrane reinforcers. A general role for polyterpenoids: membrane stabilization. New York: Plenum Press, 1990: 237-245
    208. Park YL, Chow WS, Osmond CB et a1. Electron transport to oxygen mitigates against the photoinactivation of photosystemⅡin vivo. Photosynthesis Research,1996,50:23-32
    209. Pavel P. Molecular mechanism of high-temperature-induced inhibition of acceptor side of PSⅡ. Photosynthesis Research, 1999, 62: 55-66
    210. Pearson S, Hadley P, Wheldon AE. A reanalysis of the effects of temperature and irradiance on time to flowering in chrysanthemum (Dendranthema grandiflora). Journal of Horticultural Science, 1993, 68: 89-97
    211. Pesaresi P, Moya I. Xanthophyll cycle pigments in wild type Arabidopsis and in aba mutants blocked in zeaxanthin epoxidation Photosynthesis: from light to biosphere. Netherlands: Kluwer Academic Publishers, 1995, 4: 95-98
    212. Prasad T K. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings. Plant Physiology, 1997, 114: 1369-1376
    213. Raison JK, Berry JA. Correlations between the thermal stability of chloroplast thylakoid membranes and the composition and fludity of their polar lipids upon acclimation of higher plant Nerium oleander to growth temperature. Biochim and Biophysica Acta, 1982, 688: 218-228
    214. Richter M, Rhle W, Wild A. Studies on the mechanism of photosystemⅡphotoinhibition.Ⅱ. The involvement of toxic oxygen species. Photosynthesis Research, 1990, 24(3): 237-243
    215. Robinson SP. Adenosine triphosphate hydrolysis by purified Rubisco activase. Archives of Biochemistry and Biophysics, 1989, 268: 93-99
    216. Rockholm DC, Yamamoto HY. Violaxanthin de-epoxidase. Plant Physiol, 1990, 2(5): 479-494
    217. Ronald WG, Ascher PD. Effect of high temperature treatments on seed yield and self incompatibility in chrysanthemum. Euphytica, 1975, 24: 317-322
    218. Rosenqvist E. Light acclimation maintains the redox state of the PSⅡelectron acceptor QA witin a narrow range over abroad range of light intensities. Photosythesis Research, 2001, 70: 299-310
    219. Ruban AV, Young AJ, Horton PModulation of chlorophyll fluorescence quenching in isolated light harvesting complex of photosystemⅡ. Biochim Biophys Acta, 1994, 1186: 123-127
    220. Salvucci ME, Ogren WL. The mechanism of Rubisco activase: insight from studies of the properties and structure of the enzyme. Photosynthesis Research, 1996, 47: 1-11
    221. Sato Y, Murakami T, Funatsuki H, et al. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. Journal of Experimental Botany, 2001, 52: 145-151.
    222. Sayed OH, Emes MJ. Characterisetion of the heat-induced stimulaton of photosystem imdiated electron transport. Acta Botanica Neerlandica, 1994, 43: 137-143
    223. Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a non-destructive indicator for rapid assessment of in vivo photosynthesis. Ecological Studies, 1994, 100: 49-70
    224. Schreiber U, Neubauer C. O2-dependent electron flow, membrane energization and the mechanism of non- photochemical quenching of chlorophyll fluorescence. Photosynthesis Research, 1990, 25: 279-293
    225. Shen JR, Kazuhiko S, Sakae K. Calcium content of oxygen-evolving photosystemⅡpreparation from higher plants. Bicchimica et Biophysica Aca (BBa) -Bionergetics, 1988, 933(2): 358-364
    226. Siefermann-Harms D, Nimmemann H. Pigment organization in the light-harvesting. Photochem Photobiol, 1980, 32. 277-280
    227. Srivastava A, Greppin H. Regulation of antenna structure and electron transport in photosystemⅡof Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyⅡαfluorescence transient. Biochim and Biophysica Acta, 1997, 1320: 95-106
    228. Stitt M. Interactions between sucrose synthesis and CO2 fixation.IV. Temperature- dependent adjustment of the relation between sucrose synthesis and CO2 fixation. Plant Physiology, 1988, 133: 392-400
    229. Sundby C, Maenpaa P. Temperature-dependant changes in the antenna size of photosystemⅡ, Biochimica and Biophysica Acta, 1986, 851: 475-483
    230. Sundby C, Maenpaa P. Temperature-dependent changes in the antennae size of PSⅡ: Reversible conversion of PSⅡαto PSⅡβ. Biochim and Biophysica Acta, 1986, 851: 475-483
    231. Tewari AK, Tripathy BC. Temperature_stress_induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol,1998, 117: 851-858.
    232. Thayer SS. Leaf Xanthophyll content and composition in sun and shade determined by HPLC. Photosynthesis Research, 1990, 23: 331-343
    233. Thomas DJ, Thomas J, Youderian PA, et a1. Photoinhibition and light-induced cyclic electron transport in ndhB(-) and psaE(-) mutants of Synechocystis sp. PCC 6803. Plant Cell Physiol, 2001, 42: 803-812
    234. Thomber J, Morisige D. Light harvestion in photosystemsⅠandⅡ. Biochemical Society Transactions, 1993, 21: 15-18
    235. Tschiersch H, Ohmann E. Photoinhibition in Euglena gracilis: Involvement of reactive oxygen species. Planta, 1993, 191(3): 316-323
    236. Upchurch DR. Maintenance of constant leaf temperature by plants.Ⅱ. Experimmental observations in cotton. Environ. Exp. Bot., 1988, 28: 359-366
    237. Van KO, Snel JFH. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 1990, 25(4): 147-150
    238. Varadi G, Polos E. Xanthophyll cycle patterns and in vivo photoinhibition in herbicide-resistant biotypes of Conyza Canadensis. Journal of Plant Physiology, 1994, 144: 669-674
    239. Viering E. The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 579-620
    240. Walters RG, Horton P. Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves. Photosynthesis Research, 1991, 27(2):121-133
    241. Ward DA. The temperature acclimation of photosynthetic responses to CO2 in Zea mays and its relationship to the activities of photosynthetic enzymes and the CO2 concentrating mechanism of C4 photosynthesis. Plant, Cell and Environment, 1987, 10: 407-411
    242. Webb MS. Biochemical and biophysical properties of thylakoid acyl lipids. Biochimica and Biophysica Acta, 1991, 1060: 133-158
    243. Willitsa DH, Bailey DA. The effect of night temperature on chrysanthemum flowering heat-tolerant and heat-sensitive cultivars. Scientia Horticulturae, 2000, 83: 325-330
    244. Willmer CM, Mansfield TA. A critical examination of the use of detached epidermis in studies of stomatal physiology. The New Photologist, 1969, 68, 363-375
    245. Wu J, Heber U. Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic apparatus against photoinhibition. Botanica Acta, 1991, 104: 283
    246. Yamamoto HY. The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim and Biophysica Acta, 1972, 267: 538-543
    247. Yamamoto HY, Satoh K. Competitive inhibition analysis of the enzyme-substrate interaction in the carboxy-terminal processing of the precursor D1 protein of photosystemⅡreaction center using substituted oligopeptides. FEBS Lett, 1998, 430: 261-265
    248. Yamashita T. Inhibition of chloroplasts by UV-irradiation and heat-treatment. Plant Physiology, 1968, 43: 2037-2040
    249. Yordanov I, Petkova R. Mechanisms of the temperature damage and acclimation of the photosynthetic apparatus. Photochemistry and Photobiology, 1986, 12: 147-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700