用户名: 密码: 验证码:
Oxo鈥揗o(IV)(dithiolene)thiolato Complexes: Analogue of Reduced Sulfite Oxidase
详细信息    查看全文
  • 作者:Joyee Mitra ; Sabyasachi Sarkar
  • 刊名:Inorganic Chemistry
  • 出版年:2013
  • 出版时间:March 18, 2013
  • 年:2013
  • 卷:52
  • 期:6
  • 页码:3032-3042
  • 全文大小:533K
  • 年卷期:v.52,no.6(March 18, 2013)
  • ISSN:1520-510X
文摘
A series of [MoIVO(mnt)(SR)(N鈥揘)]鈭?/sup> (mnt = maleonitriledithiolate; R = Ph, nap, p-Cl-Ph, p-CO2H-Ph, and p-NO2-Ph; N鈥揘 = 2,2鈥?bipyridine (bipy) and 1,10-phenanthroline (phen)) complexes analogous to the reduced active site of enzymes of the sulfite oxidase family has been synthesized and their participation in electron transfer reactions studied. Equatorial thiolate and dithiolene ligations have been used to closely simulate the three sulfur coordinations present in the native molybdenum active site. These synthetic analogues have been shown to participate in electron transfer via a pentavalent EPR-active Mo(V) intermediate with minimal structural change as observed electrochemically by reversible oxidative responses. The role of the redox-active dithiolene ligand as an electron transfer gate between external oxidants and the molybdenum center could be envisaged in one of the analogue systems where the initial transient EPR signal with g = 2.008 is replaced by the appearance of a typical Mo(V)-centered EPR (g = 1.976) signal. The appearance of such a ligand-based transient radical at the initial stage has been supported by the ligand-centered frontier orbital from DFT calculation. A stepwise rationale has been provided by computational study to show that the coupled effects of the diimine bite angle and the thiolato dihedral angle determine the metal- or ligand-based frontier orbital occupancy. DFT calculation has further supported the similarity between the reduced, semireduced, and oxidized resting state of the molybdenum center in Moco of SO with the synthesized complexes and their corresponding one-electron and fully oxidized species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700