用户名: 密码: 验证码:
ZnFe2O4 Nanotubes: Microstructure and Magnetic Properties
详细信息    查看全文
文摘
Employing an electron energy-loss spectrum (EELS), we have found that the structure of ZnFe2O4 nanotubes deviated from the normal spinel structure as the calcination temperature decreases. More Fe3+ ions migrate to the tetrahedral sites (A sites) rather than staying in their equilibrium octahedral sites (B sites). This results in the enhanced superexchange interactions between Fe3+ ions, thus affecting the magnetic properties of the nanotubes, i.e., higher blocking temperature (TB) and larger saturation magnetization (MS), etc. On the other hand, we have also found that deviation of the Fe/Zn from 2 affects the magnetic properties of the nanotube samples. This should be caused by the enhanced superexchange interactions resulting from the extra Fe3+ ions in the nonstoichiometric sample.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700