用户名: 密码: 验证码:
La2O2CO3 Encapsulated La2O3 Nanoparticles Supported on Carbon as Superior Electrocatalysts for Oxygen Reduction Reaction
详细信息    查看全文
文摘
Constructing nanoscale hybrid materials with unique interfacial structures by using various metal oxides and carbon supports as building blocks are of great importance to develop highly active, economical hybrid catalysts for oxygen reduction reaction (ORR). In this work, La2O2CO3 encapsulated La2O3 nanoparticles on a carbon black (La2O2CO3@La2O3/C) were fabricated via chemical precipitation in an aqueous solution containing different concentrations of cetyltrimethyl ammonium bromide (CTAB), followed by calcination at 750 掳C. At a given CTAB concentration 24.8 mmol/L, the obtained lanthanum compound nanoparticles reach the smallest particle size (7.1 nm) and are well-dispersed on the carbon surface. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results demonstrate the formation of La2O2CO3 located on the surface of La2O3 nanoparticles in the hybrid. The synthesized La2O2CO3@La2O3/C hybrid exhibits a significantly enhanced electrocatalytic activity in electrocatalysis experiments relative to pure La2O3, La2O2CO3, and carbon in an alkaline environment, by using the R(R)DE technique. Moreover, its long-term stability also outperforms that obtained by commercial Pt/C catalysts (E-TEK). The exact origin of the fast ORR kinetics is mainly ascribed to the La2O2CO3 layer sandwiched at the interface of carbon and La2O3, which contributes favorable surface-adsorbed hydroxide (鈥擮H鈥?/sup>ad) substitution and promotes active oxygen adsorption at the interfaces. The unique covalent 鈥擟鈥擮鈥擟(鈺怬)鈥擮鈥擫a鈥擮鈥?bonds, formed at the interfaces between La2O2CO3 and carbon, can act as active sites for the improved ORR kinetics over this hybrid catalyst. Therefore, the fabrication of lanthanum compound-based hybrid material with an unique interfacial structure maybe open a new way to develop carbon-supported metal oxides as next-generation of ORR catalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700