用户名: 密码: 验证码:
Redox Imbalance Underlies the Fitness Defect Associated with Inactivation of the Pta-AckA Pathway in Staphylococcus aureus
详细信息    查看全文
文摘
The phosphotransacetylase-acetate kinase (Pta-AckA) pathway is thought to be a vital ATP generating pathway for Staphylococcus aureus. Disruption of the Pta-AckA pathway during overflow metabolism causes significant reduction in growth rate and viability, albeit not due to intracellular ATP depletion. Here, we demonstrate that toxicity associated with inactivation of the Pta-AckA pathway resulted from an altered intracellular redox environment. Growth of the pta and ackA mutants under anaerobic conditions partially restored cell viability. NMR metabolomics analyses and 13C6-glucose metabolism tracing experiments revealed the activity of multiple pathways that promote redox (NADH/NAD+) turnover to be enhanced in the pta and ackA mutants during anaerobic growth. Restoration of redox homeostasis in the pta mutant by overexpressing class="smallcaps">l- lactate dehydrogenase partially restored its viability under aerobic conditions. Together, our findings suggest that during overflow metabolism, the Pta-AckA pathway plays a critical role in preventing cell viability defects by promoting intracellular redox homeostasis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700