用户名: 密码: 验证码:
Thermoresponsive Semi-IPN Hydrogel Microfibers from Continuous Fluidic Processing with High Elasticity and Fast Actuation
详细信息    查看全文
文摘
Hydrogels with rapid and strong response to external stimuli and possessing high elasticity and strength have been considered as platform materials for numerous applications, e.g., in biomaterials engineering. Thermoresponsive hydrogels based on semi-interpenetrating polymer networks (semi-IPN) featuring N-isopropylacrylamide with copolymers of poly(N-isopropylacrylamide-co-hydroxyethyl methacrylate) p(NIPAM-HEMA) chains are prepared and described. The copolymer was characterized by FTIR, NMR, and GPC. The semi-IPN structured hydrogel and its responsive properties were evaluated by dynamic mechanical measurements, SEM, DSC, equilibrium swelling ratio, and dynamic deswelling tests. The results illustrate that the semi-IPN structured hydrogels possess rapid response and high elasticity compared to conventional pNIPAM hydrogels. By using a microfluidic device with double coaxial laminar flow, we succeeded in fabricating temperature responsive (“smart”) hydrogel microfibers with core–shell structures that exhibit typical diameters on the order of 100 μm. The diameter of the fibers can be tuned by changing the flow conditions. Such hydrogel fibers can be used to fabricate “smart” devices, and the core layer can be potentially loaded with cargos to incorporate biological function in the constructs. The platforms obtained by this approach hold promise as artificial “muscles”, and also “smart” hydrogel carriers providing a unique biophysical and bioactive environment for regenerative medicine and tissue engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700