用户名: 密码: 验证码:
Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries
详细信息    查看全文
  • 作者:Qingchao Liu (1) (2)
    Yinshan Jiang (2)
    Jijing Xu (1)
    Dan Xu (1)
    Zhiwen Chang (1) (3)
    Yanbin Yin (1) (2)
    Wanqiang Liu (4)
    Xinbo Zhang (1)

    1. State Key Laboratory of Rare Earth Resource Utilization
    ; Changchun Institute of Applied Chemistry ; Chinese Academy of Sciences ; Changchun ; 130022 ; China
    2. School of Materials Science and Engineering
    ; Jilin University ; Changchun ; 130012 ; China
    3. Graduate University of Chinese Academy of Sciences
    ; Beijing ; 100049 ; China
    4. School of Materials Science and Engineering
    ; Changchun University of Science and Technology ; Changchun ; 130022 ; China
  • 关键词:lithium ; oxygen batteries ; bifunctional cathode catalyst ; Co3O4 nanowires ; cycling stability
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:8
  • 期:2
  • 页码:576-583
  • 全文大小:2,424 KB
  • 参考文献:1. Wang, Y. G.; He, P.; Zhou, H. S. A lithium-air capacitor-battery based on a hybrid electrolyte. / Energy Environ. Sci. 2011, / 4, 4994鈥?999. CrossRef
    2. Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. / J. Electrochem. Soc. 1996, / 143, 1鈥?. CrossRef
    3. Lu, Y. C.; Gasteiger, H. A.; Parent, M. C; Chiloyan, V.; Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. / Electrochem. Solid-State Lett. 2010, / 13, A69鈥揂72. CrossRef
    4. Zheng, J. P.; Liang, R. Y.; Hendrickson, M.; Plichta, E. J. Theoretical energy density of Li-air batteries. / J. Electrochem. Soc. 2008, / 155, A432鈥揂437. CrossRef
    5. Ogasawara, T.; D茅bart, A.; Holzapfel, M.; Nov谩k, P.; Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. / J. Am. Chem. Soc. 2006, / 128, 1390鈥?393. CrossRef
    6. Zhao, N.; Li, C. L.; Guo, X. X. Review of methods for improving the cyclic stability of Li-air batteries by controlling cathode reactions. / Energy Technol. 2014, / 2, 317鈥?23 CrossRef
    7. Li, F. J.; Zhang, T.; Zhou, H. S. Challenges of non-aqueous Li-O2 batteries: Electrolytes, catalysts, and anodes. / Energy Environ. Sci. 2013, / 6, 1125鈥?141. CrossRef
    8. Xu, J. J.; Xu, D.; Wang, Z. L.; Wang, H. G.; Zhang, L. L; Zhang, X. B. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. / Angew. Chem. Int. Ed. 2013, / 52, 3887鈥?890. CrossRef
    9. Zhang, Z. A.; Zhou, G.; Chen, W.; Lai, Y. Q.; Li, J. Facile synthesisof Fe2O3 nanoflakes and their electrochemical properties for Li-air batteries. / ECS Electrochem. Lett. 2014, / 3, A8鈥揂10. CrossRef
    10. Black, R.; Lee, J. H.; Adams, B.; Mims, C. A.; Nazar, L. F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries. / Angew. Chem. Int. Ed. 2013, / 52, 392鈥?96. CrossRef
    11. Ryu, W. H.; Yoon, T. H.; Song, S. H.; Jeon, S.; Park, Y. J.; Kim, I. D. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high capacity and long-cycle Li-O2 batteries. / Nano Lett. 2013, / 13, 4190鈥?197. CrossRef
    12. Zhang, L. L.; Zhang, X. B.; Wang, Z. L.; Xu, J. J.; Xu, D. Wang, L. M. High aspect ratio 纬-MnOOH nanowires for high performance rechargeable nonaqueous lithium-oxygen batteries. / Chem. Commun. 2012, / 48, 7598鈥?600. CrossRef
    13. Cao, Y.; Wei, Z. K.; He, J.; Zang, J.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. / 伪-MnO2 nanorods grown / in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance. / Energy Environ. Sci. 2012, / 5, 9765鈥?768. CrossRef
    14. D茅bart, A.; Bao, J. L.; Armstrong, G.; Bruce, P. G. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. / J. Power Sources 2007, / 174, 1177鈥?182. CrossRef
    15. T眉ys眉z, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. / Nano Res. 2013, / 6, 47鈥?4. CrossRef
    16. Du, H. M, Jiao, L. F.; Wang, Q. H.; Yang, J. Q.; Guo, L. J.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors. / Nano Res. 2013, / 6, 87鈥?8. CrossRef
    17. Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. / Nano Res. 2013, / 6, 167鈥?73. CrossRef
    18. Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. / Nano Res. 2014, / 7, 794鈥?03. CrossRef
    19. Kim, W. S.; Hwa, Y.; Kim, H. C.; Chio, J. H.; Sohn, H. J.; Hong, S. H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. / Nano Res. 2014, / 7, 1128鈥?136. CrossRef
    20. Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Zhang, X. B. Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li-O2 battery. / J. Mater. Chem. A 2014, / 2, 6081鈥?085. CrossRef
    21. Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. / Nat. Commun. 2013, / 4, 2438.
    22. Sun, B.; Huang X. D.; Chen, S. Q.; Munroe, P. R.; Wang, G. X. Porous graphene nanoarchitectures-An efficient catalyst for low charge-overpotential, long life and high capacity lithium-oxygen batteries. / Nano Lett. 2014, / 14, 3145鈥?152. CrossRef
    23. Sun, B.; Liu, H.; Munroe, P.; Ahn, H.; Wang, G. X. Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries. / Nano Res. 2012, / 5, 460鈥?69. CrossRef
    24. Dong, Y. M.; He, K.; Yin, L.; Zhang, A. M. A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties. / Nanotechnology 2007, / 18, 435602. CrossRef
    25. Adams, B. D.; Radtke, C.; Black, R.; Trudeau, M. L.; Zaghib, K.; Nazar, L. F. Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge. / Energy Environ. Sci. 2013, / 6, 1772鈥?778. CrossRef
    26. Yilmaz, E.; Yogi, C.; Yamanaka, K.; Ohta, T.; Byon, H. R. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. / Nano Lett. 2013, / 13, 4679鈥?684. CrossRef
    27. Gallant, B. M.; Kwabi, D. G.; Mitchell, R. R.; Zhou, J. G.; Thompson, C. V.; Shao-Horn, Y. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries. / Energy Environ. Sci. 2013, / 6, 2518鈥?528. CrossRef
    28. Lu, J.; Lei, Y.; Lau, K. C.; Luo, X. Y.; Du, P.; Wen, J. G.; Assary, R. S.; Das, U.; Miller, D. J.; Elam, J. W.; et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. / Nat. Commun. 2013, / 4, 2383
    29. Lu, Y. C.; Kwabi, D. G.; Yao, K. P. C.; Harding, J. R.; Zhou, J. G.; Zuin, L.; Shao-Horn, Y. The discharge rate capability of rechargeable Li-O2 batteries. / Energy Environ. Sci. 2011, / 4, 2999鈥?007. CrossRef
    30. Mitchell, R. R.; Gallant, B. M.; Shao-Horn, Y.; Thompson, C. V. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. / J. Phys. Chem. Lett. 2013, / 4, 1060鈥?064. CrossRef
    31. Fan, W. G.; Cui, Z. H.; Guo, X. X. Tracking formation and decomposition of abacus-ball-shaped lithium peroxides in Li-O2 cells. / J. Phys. Chem. C 2013, / 117, 2623鈥?627. CrossRef
    32. Jung, H. G.; Kim, H. S.; Park, J. B.; Oh, I. H.; Hassoun, J.; Yoon, C. S.; Scrosati, B.; Sun, Y. K. A transmission electron microscopy study of the electrochemical process of lithium-oxygen cells. / Nano Lett. 2012, / 12, 4333鈥?335. CrossRef
    33. Tian, F.; Radin, M. D.; Siegel, D. J. Enhanced charge transport in amorphous Li2O2. / Chem. Mater. 2014, / 26, 2952鈥?959. CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Hierarchical Co3O4 porous nanowires (NWs) have been synthesized using a hydrothermal method followed by calcination. When employed as a cathode catalyst in non-aqueous Li-oxygen batteries, the Co3O4 NWs effectively improve both the round-trip efficiency and cycling stability, which can be attributed to the high catalytic activities of Co3O4 NWs for the oxygen reduction reaction and the oxygen evolution reaction during discharge and charge processes, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700