用户名: 密码: 验证码:
Multiple surface plasmon polaritons modes on thin silver film controlled by a two-dimensional lattice of silver nanodimers
详细信息    查看全文
  • 作者:Ying Chang (1)
    Yongyuan Jiang (1) (2)

    1. Department of Physics
    ; Harbin Institute of Technology ; Harbin ; 150001 ; China
    2. Key Lab of Micro-Optics and Photonic Technology of Heilongjiang Province
    ; Harbin ; 150001 ; China
  • 关键词:Silver nanodimers ; Surface plasmon polaritons ; Doubly periodic lattice ; Nanophotonics
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:17
  • 期:1
  • 全文大小:955 KB
  • 参考文献:1. Bai BF, Li LF, Zeng LJ (2005) Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes. Opt Lett 30:2360鈥?362. doi:10.1364/ol.30.002360 CrossRef
    2. Banaee MG, Crozier KB (2010) Gold nanorings as substrates for surface-enhanced Raman scattering. Opt Lett 35:760鈥?62. doi:10.1364/OL.35.000760 CrossRef
    3. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824鈥?30. doi:10.1038/nature01937 CrossRef
    4. Barnes WL, Murray WA, Dintinger J, Devaux E, Ebbesen TW (2004) Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys Rev Lett 92:107401. doi:10.1103/PhysRevLett.92.107401 CrossRef
    5. Cesario J, Quidant R, Badenes G, Enoch S (2005) Electromagnetic coupling between a metal nanoparticle grating and a metallic surface. Opt Lett 30:3404鈥?406. doi:10.1364/OL.30.003404 CrossRef
    6. Chang Y, Jiang Y, Sun X (2013) Plasmonic coupling from silver nanoparticle dimer array mediating surface plasmon resonant enhancement on the thin silver film. Appl Phys B 113:503鈥?09. doi:10.1007/s00340-013-5499-x CrossRef
    7. Christ A, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2003) Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett 91:183901. doi:10.1103/PhysRevLett.91.183901 CrossRef
    8. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667鈥?69. doi:10.1038/35570 CrossRef
    9. Felidj N, Aubard J, Levi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82:3095鈥?097. doi:10.1063/1.1571979 CrossRef
    10. Garcia-Vidal FJ, Lezec HJ, Ebbesen TW, Martin-Moreno L (2003) Multiple paths to enhance optical transmission through a single subwavelength slit. Phys Rev Lett 90:213901. doi:10.1103/PhysRevLett.90.213901 CrossRef
    11. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39鈥?6. doi:10.1038/nature05350 CrossRef
    12. Ghoshal A, Kik PG (2008) Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays. J Appl Phys 103:113111. doi:10.1063/1.2936971 CrossRef
    13. Ghoshal A, Kik PG (2009) Excitation of propagating surface plasmons by a periodic nanoparticle array: trade-off between particle-induced near-field excitation and damping. Appl Phys Lett 94:251102. doi:10.1063/1.3156862 CrossRef
    14. Ghoshal A, Divliansky I, Kik PG (2009) Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays. Appl Phys Lett 94:171108 CrossRef
    15. Gopinath A, Boriskina SV, Premasiri WR, Ziegler L, Reinhard BM, Dal Negro L (2009) Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing. Nano Lett 9:3922鈥?929. doi:10.1021/nl902134r CrossRef
    16. Hohenau A, Krenn JR, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Beermann J, Bozhevolnyi SI (2007) Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films. Phys Rev B 75:085104. doi:10.1103/PhysRevB.75.085104 CrossRef
    17. Huang J, Xuan Y, Li Q (2012) Thermally tunable metamaterial based on thermochromic effect. Microw Opt Technol Lett 54:1889鈥?893. doi:10.1002/mop.26931 CrossRef
    18. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370 CrossRef
    19. Liu ZW, Du Y, Liao J, Zhu SN, Zhu YY, Qin YQ, Wang HT, He JL, Zhang C, Ming NB (2002) Engineering of a dual-periodic optical superlattice used in a coupled optical parametric interaction. J Opt Soc Am B Opt Phys 19:1676鈥?684. doi:10.1364/josab.19.001676 CrossRef
    20. Lu H, Liu X, Mao D, Wang G (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37:3780鈥?782. doi:10.1364/OL.37.003780 CrossRef
    21. Matsui T, Agrawal A, Nahata A, Vardeny ZV (2007) Transmission resonances through aperiodic arrays of subwavelength apertures. Nature 446:517鈥?21. doi:10.1038/nature05620 CrossRef
    22. Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, Garcia de Abajo FJ (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792鈥?805. doi:10.1039/b711486a CrossRef
    23. Nordlander P, Le F (2006) Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. Appl Phys B Lasers Optics 84:35鈥?1. doi:10.1007/s00340-006-2203-4 CrossRef
    24. Papanikolaou N (2007) Optical properties of metallic nanoparticle arrays on a thin metallic film. Phys Rev B 75:235426. doi:10.1103/PhysRevB.75.235426 CrossRef
    25. Rakic AD, Djuri拧ic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271鈥?283. doi:10.1364/AO.37.005271 CrossRef
    26. Stefanou N, Yannopapas V, Modinos A (1998) Heterostructures of photonic crystals: frequency bands and transmission coefficients. Comput Phys Commun 113:49鈥?7. doi:10.1016/s0010-4655(98)00060-5 CrossRef
    27. Tabor C, Murali R, Mahmoud M, El-Sayed MA (2009) On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field Dipole Plasmon coupling on nanoparticle size and shape. J Phys Chem A 113:1946鈥?953. doi:10.1021/jp807904s CrossRef
    28. Wang K, Long H, Fu M, Yang G, Lu PX (2010) Size-related third-order optical nonlinearities of Au nanoparticle arrays. Opt Express 18:13874鈥?3879. doi:10.1364/OE.18.013874 CrossRef
    29. Zhu S, Zhu YY, Ming NB (1997) Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278:843鈥?46. doi:10.1126/science.278.5339.843 CrossRef
    30. Zhu W, Banaee MG, Wang D, Chu Y, Crozier KB (2011) Lithographically fabricated optical antennas with gaps well below 10聽nm. Small 7:1761鈥?766. doi:10.1002/smll.201100371 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
We study the optical resonant spectrum of a two-dimensional periodic array of silver nanodimers on a thin silver film using multiple scattering formalism. The excited multiple plasmonic modes on two interfaces of the silver film reveal that the dispersion relationships of surface plasmon polaritons on metallic film are modified by doubly periodic lattice due to the fact that wave vectors matching conditions are satisfied. Moreover, we demonstrate that the plasmonic modes are directly controlled by the thickness of silver film, as well as the gap between nanodimer array and silver film. These effects provide novel high-efficient and steady way for excitation in future plasmonic nanodevices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700