用户名: 密码: 验证码:
Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green
详细信息    查看全文
  • 作者:Guo-En Weng (1)
    Wan-Ru Zhao (2)
    Shao-Qiang Chen (3) (4)
    Hidefumi Akiyama (3)
    Zeng-Cheng Li (5)
    Jian-Ping Liu (5)
    Bao-Ping Zhang (2)

    1. Department of Physics and Semiconductor Photonics Research Center
    ; Xiamen University ; 422 South Siming Road ; Xiamen ; 361005 ; P. R. China
    2. Department of Electronic Engineering
    ; Optoelectronics Engineering Research Center ; Xiamen University ; 422 South Siming Road ; Xiamen ; 361005 ; P. R. China
    3. Institute for Solid State Physics
    ; The University of Tokyo ; 5-1-5 Kashiwanoha ; Kashiwa ; Chiba ; 277-8581 ; Japan
    4. Department of Electronic Engineering
    ; East China Normal University ; 500 Dongchuan Road ; Shanghai ; 200241 ; P. R. China
    5. Suzhou Institute of Nano-Tech and Nano-Bionics
    ; Chinese Academy of Sciences ; 398 Ruoshui Road ; Suzhou ; 215123 ; P. R. China
  • 关键词:InGaN ; Quantum dots ; Localization effect ; Carrier relaxation dynamics
  • 刊名:Nanoscale Research Letters
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:10
  • 期:1
  • 全文大小:1,334 KB
  • 参考文献:1. Koike M, Shibata N, Kato H, Takahashi Y. Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications. IEEE J Sel Topics Quantum Electron. 2002;8:271鈥?. CrossRef
    2. Li SB, Ware M, Wu J, Minor P, Wang ZM, Jiang YD, et al. Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN. Appl Phys Lett. 2012;101:122103-1鈥?.
    3. Li SB, Zhang T, Wu J, Yang YJ, Wang ZM, Wu ZM, et al. Polarization induced hole doping in graded AlxGa1鈭抶N (x=0.71) layer grown by molecular beam epitaxy. Appl Phys Lett. 2013;102:062108-1鈥?.
    4. Wu J, Walukiewicz W, Shan W, Yu KM, Ager III JM, Haller EE, et al. Effects of the narrow band gap on the properties of InN. Phys Rev B. 2013;66:201403-1鈥?.
    5. Zhao HP, Liu GY, Zhang J, Poplawsky JD, Dierolf V, Tansu N. Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt Express. 2011;19:A991鈥?007. CrossRef
    6. Wu ZH, Fischer AM, Ponce FA, Lee W, Ryou JH, Limb J, et al. Effect of internal electrostatic fields in InGaN quantum wells on the properties of green light emitting diodes. Appl Phys Lett. 2007;91:041915-1鈥?.
    7. Queren D, Avramescu A, Br眉derl G, Breidenassel A, Schillgalies M, Lutgen S, et al. 500 nm electrically driven InGaN based laser diodes. Appl Phys Lett. 2009;94:081119-1鈥?. CrossRef
    8. Schulz S, O'Reilly EP. Built-in field reduction in InGaN/GaN quantum dot molecules. Appl Phys Lett. 2011;99:223106-1鈥?. CrossRef
    9. Schulz S, O'Reilly EP. Theory of reduced built-in polarization field in nitride-based quantum dots. Phys Rev B. 2010;82:033411-1鈥?.
    10. Lv WB, Wang L, Wang L, Xing YC, Yang D, Hao ZB, et al. InGaN quantum dot green light-emitting diodes with negligible blue shift of electroluminescence peak wavelength. Appl Phys Express. 2014;7:025203-1鈥?.
    11. Zhang M, Bhattacharya P, Guo W. InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl Phys Lett. 2010;97:011103-1鈥?.
    12. Bhattacharya P, Zhang M, Hinckley J. Tunnel injection In0.25Ga0.75N/GaN quantum dot light-emitting diodes. Appl Phys Lett. 2010;97:251107-1鈥?.
    13. Moustakas TD, Xu T, Thomidis C, Nikiforov AY, Zhou L, Smith DJ. Growth of III-nitride quantum dots and their applications to blue-green LEDs. Phys Stat Sol (a). 2008;205(11):2560鈥?. CrossRef
    14. Lv WB, Wang L, Wang JX, Xing YC, Zheng JY, Yang D, et al. Green and red light-emitting diodes based on multilayer InGaN/GaN dots grown by growth interruption method. Jpn J Appl Phys. 2013;52:08JG13-1鈥?. CrossRef
    15. Zhang M, Banerjee A, Lee CS, Hinckley JM, Bhattacharya P. A InGaN/GaN quantum dot green (位 = 524 nm) laser. Appl Phys Lett. 2011;98:221104-1鈥?.
    16. Frost T, Banerjee A, Sun K, Chuang SL, Bhattacharya P. InGaN/GaN quantum dot red (位 = 630 nm) laser. IEEE J Quantum Electron. 2013;49(11):923鈥?1. CrossRef
    17. Lv WB, Wang L, Wang JX, Hao ZB, Luo Y. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers. Nanoscale Res Lett. 2012;7:617鈥?4. CrossRef
    18. Robinson JW, Rice JH, Jarjour A, Smith JD, Taylor RA, Oliver RA, et al. Time-resolved dynamics in single InGaN quantum dots. Appl Phys Lett. 2003;83:2674鈥?. CrossRef
    19. Bartel T, Dworzak M, Strassburg M, Hoffmann A, Strittmatter A, Bimberg D. Recombination dynamics of localized excitons in InGaN quantum dots. Appl Phys Lett. 2004;85:1946鈥?. CrossRef
    20. Ma J, Ji XL, Wang GH, Wei XC, Lu HX, Yi XY, et al. Anomalous temperature dependence of photoluminescence in selfassembled InGaN quantum dots. Appl Phys Lett. 2012;101:131101-1鈥?.
    21. Wang T, Bai J, Sakai S, Ho JK. Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes. Appl Phys Lett. 2001;78:2617鈥?. CrossRef
    22. Li ZC, Liu JP, Feng MX, Zhou K, Zhang SM, Wang H, et al. Effects of matrix layer composition on the structural and optical properties of selforganized InGaN quantum dots. J Appl Phys. 2013;114:093105-1鈥?.
    23. Masumoto Y, Takagahara T. Semiconductor quantum dot. Berlin: Springer; 2002. p. 174. CrossRef
    24. Sun G, Xu GB, Ding YJ, Zhao HP, Liu GY, Zhang J, et al. Investigation of fast and slow decays in InGaN/GaN quantum wells. Appl Phys Lett. 2011;99:081104-1鈥?.
    25. Feng ZC, Zhu LH, Kuo TW, Wu CY, Tsai HL, Liu BL, et al. Optical and structural studies of dual wavelength InGaN/GaN tunnel-injection light emitting diodes grown by metalorganic chemical vapor deposition. Thin Solid Films. 2013;529:269鈥?4. CrossRef
    26. Liu L, Wang L, Liu NY, Yang W, Li D, Chen WH, et al. Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes. J Appl Phys. 2012;112:083101-1鈥?.
    27. Feng SW, Cheng YC, Chung YY, Yang CC, Mao MH, Lin YS, et al. Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures. Appl Phys Lett. 2002;80:4375鈥?. CrossRef
    28. Kuroda T, Tackeuchi A. Influence of free carrier screening on the luminescence energy shift and carrier lifetime of InGaN quantum wells. J Appl Phys. 2002;92:3071鈥?. CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
Strong localization effect in self-assembled InGaN quantum dots (QDs) grown by metalorganic chemical vapor deposition has been evidenced by temperature-dependent photoluminescence (PL) at different excitation power. The integrated emission intensity increases gradually in the range from 30 to 160 K and then decreases with a further increase in temperature at high excitation intensity, while this phenomenon disappeared at low excitation intensity. Under high excitation, about 40% emission enhancement at 160 K compared to that at low temperature, as well as a higher internal quantum efficiency (IQE) of 41.1%, was observed. A strong localization model is proposed to describe the possible processes of carrier transport, relaxation, and recombination. Using this model, the evolution of excitation-power-dependent emission intensity, shift of peak energy, and linewidth variation with elevating temperature is well explained. Finally, two-component decays of time-resolved PL (TRPL) with various excitation intensities are observed and analyzed with the biexponential model, which enables us to further understand the carrier relaxation dynamics in the InGaN QDs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700