用户名: 密码: 验证码:
Genome organisation of the Acinetobacter lytic phage ZZ1 and comparison with other T4-like Acinetobacter phages
详细信息    查看全文
  • 作者:Jing Jin (1) (2)
    Zhen-Jiang Li (1)
    Shu-Wei Wang (1)
    Shan-Mei Wang (3)
    Song-Jian Chen (1)
    De-Hai Huang (1)
    Gai Zhang (1)
    Ya-Hui Li (1)
    Xiao-Ting Wang (1)
    Jin Wang (1)
    Guo-Qiang Zhao (2)

    1. Department of Pathogen Biology and Immunology
    ; Henan Medical College ; Shuanghu Road #8 ; Zhengzhou ; 451191 ; P. R. China
    2. Department of Pathogen Biology
    ; Basic Medical College of Zhengzhou University ; Kexue Road #100 ; Zhengzhou ; 450001 ; P. R. China
    3. Clinical Laboratory
    ; Henan Provincial People鈥檚 Hospital ; Zhengzhou ; 450003 ; P. R. China
  • 关键词:Phage genome annotation ; Phage genome organisation ; Comparative genomic analyses ; T4 ; like phage
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:3,615 KB
  • 参考文献:1. Jin, J, Li, ZJ, Wang, SW, Wang, SM, Huang, DH, Li, YH, Ma, YY, Wang, J, Liu, F, Chen, XD, Li, GX, Wang, XT, Wang, ZQ, Zhao, GQ (2012) Isolation and characterization of ZZ1, a novel lytic phage that infects Acinetobacter baumannii clinical isolates. BMC Microbiol 12: pp. 156 CrossRef
    2. Petrov, VM, Ratnayaka, S, Nolan, JM, Miller, ES, Karam, JD (2010) Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol J 7: pp. 292 CrossRef
    3. Miller, ES, Kutter, E, Mosig, G, Arisaka, F, Kunisawa, T, Ruger, W (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67: pp. 86-156 CrossRef
    4. Tetart, F, Desplats, C, Kutateladze, M, Monod, C, Ackermann, HW, Krisch, HM (2001) Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J Bacteriol 183: pp. 358-366 CrossRef
    5. Ackermann, HW, Krisch, HM (1997) A catalogue of T4-type bacteriophages. Arch Virol 142: pp. 2329-2345 CrossRef
    6. Arbiol, C, Comeau, AM, Kutateladze, M, Adamia, R, Krisch, HM (2010) Mobile regulatory cassettes mediate modular shuffling in T4-type phage genomes. Genome Biol Evol 2: pp. 140-152 CrossRef
    7. Comeau, AM, Bertrand, C, Letarov, A, Tetart, F, Krisch, HM (2007) Modular architecture of the T4 phage superfamily: A conserved core genome and a plastic periphery. Virology 362: pp. 384-396 CrossRef
    8. Miller, ES, Heidelberg, JF, Eisen, JA, Nelson, WC, Durkin, AS, Ciecko, A, Feldblyum, TV, White, O, Paulsen, IT, Nierman, WC, Lee, J, Szczypinski, B, Fraser, CM (2003) Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol 185: pp. 5220-5233 CrossRef
    9. Petrov, VM, Nolan, JM, Bertrand, C, Levy, D, Desplats, C, Krisch, HM, Karam, JD (2006) Plasticity of the gene functions for DNA replication in the T4-like phages. J Mol Biol 361: pp. 46-68 CrossRef
    10. Mann, NH, Clokie, MR, Millard, A, Cook, A, Wilson, WH, Wheatley, PJ, Letarov, A, Krisch, HM (2005) The genome of S-PM2, a 鈥減hotosynthetic鈥?T4-type bacteriophage that infects marine Synechococcus strains. J Bacteriol 187: pp. 3188-3200 CrossRef
    11. Nolan, JM, Petrov, V, Bertrand, C, Krisch, HM, Karam, JD (2006) Genetic diversity among five T4-like bacteriophages. Virol J 3: pp. 30 CrossRef
    12. Sullivan, MB, Coleman, ML, Weigele, P, Rohwer, F, Chisholm, SW (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3: pp. e144 CrossRef
    13. Liao, WC, Ng, WV, Lin, IH, Syu, WJ, Liu, TT, Chang, CH (2011) T4-Like genome organization of the Escherichia coli O157:H7 lytic phage AR1. J Virol 85: pp. 6567-6578 CrossRef
    14. Desplats, C, Krisch, HM (2003) The diversity and evolution of the T4-type bacteriophages. Res Microbiol 154: pp. 259-267 CrossRef
    15. Brussow, H, Desiere, F (2001) Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 39: pp. 213-222 CrossRef
    16. Chibani-Chennoufi, S, Sidoti, J, Bruttin, A, Dillmann, ML, Kutter, E, Qadri, F, Sarker, SA, Brussow, H (2004) Isolation of Escherichia coli bacteriophages from the stool of pediatric diarrhea patients in Bangladesh. J Bacteriol 186: pp. 8287-8294 CrossRef
    17. Zuber, S, Ngom-Bru, C, Barretto, C, Bruttin, A, Brussow, H, Denou, E (2007) Genome analysis of phage JS98 defines a fourth major subgroup of t4-like phages in Escherichia coli. J Bacteriol 189: pp. 8206-8214 CrossRef
    18. Filee, J, Bapteste, E, Susko, E, Krisch, HM (2006) A selective barrier to horizontal gene transfer in the T4-type bacteriophages that has preserved a core genome with the viral replication and structural genes. Mol Biol Evol 23: pp. 1688-1696 CrossRef
    19. Krisch, HM, Hamlett, NV, Berger, H (1972) Polynucleotide ligase in bacteriophage T4D recombination. Genetics 72: pp. 187-203
    20. Singer, BS, Gold, L, Gauss, P, Doherty, DH (1982) Determination of the amount of homology required for recombination in bacteriophage T4. Cell 31: pp. 25-33 CrossRef
    21. Repoila, F, Tetart, F, Bouet, JY, Krisch, HM (1994) Genomic polymorphism in the T-even bacteriophages. EMBO J 13: pp. 4181-4192
    22. Desplats, C, Dez, C, Tetart, F, Eleaume, H, Krisch, HM (2002) Snapshot of the genome of the pseudo-T-even bacteriophage RB49. J Bacteriol 184: pp. 2789-2804 CrossRef
    23. Park, JY, Kim, S, Kim, SM, Cha, SH, Lim, SK, Kim, J (2011) Complete genome sequence of multidrug-resistant Acinetobacter baumannii strain 1656鈥?, which forms sturdy biofilm. J Bacteriol 193: pp. 6393-6394 CrossRef
    24. Gan, HM, Lean, SS, Suhaili, Z, Thong, KL, Yeo, CC (2012) Genome sequence of Acinetobacter baumannii AC12, a polymyxin-resistant strain isolated from Terengganu. Malaysia J Bacteriol 194: pp. 5979-5980 CrossRef
    25. Liou, ML, Liu, CC, Lu, CW, Hsieh, MF, Chang, KC, Kuo, HY, Lee, CC, Chang, CT, Yang, CY, Tang, CY (2012) Genome sequence of Acinetobacter baumannii TYTH-1. J Bacteriol 194: pp. 6974 CrossRef
    26. Liu, S, Wang, Y, Xu, J, Li, Y, Guo, J, Ke, Y, Yuan, X, Wang, L, Du, X, Wang, Z, Huang, L, Zhang, N, Chen, Z (2012) Genome sequence of an OXA23-producing, carbapenem-resistant Acinetobacter baumannii strain of sequence type ST75. J Bacteriol 194: pp. 6000-6001 CrossRef
    27. Pedulla, ML, Ford, ME, Houtz, JM, Karthikeyan, T, Wadsworth, C, Lewis, JA, Jacobs-Sera, D, Falbo, J, Gross, J, Pannunzio, NR, Brucker, W, Kumar, V, Kandasamy, J, Keenan, L, Bardarov, S, Kriakov, J, Lawrence, JG, Jacobs, WR, Hendrix, RW, Hatfull, GF (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113: pp. 171-182 CrossRef
    28. Kwan, T, Liu, J, DuBow, M, Gros, P, Pelletier, J (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci U S A 102: pp. 5174-5179 CrossRef
    29. Mackiewicz, P, Zakrzewska-Czerwinska, J, Zawilak, A, Dudek, MR, Cebrat, S (2004) Where does bacterial replication start? Rules for predicting the oriC region. Nucleic Acids Res 32: pp. 3781-3791 CrossRef
    30. Bailly-Bechet, M, Vergassola, M, Rocha, E (2007) Causes for the intriguing presence of tRNAs in phages. Genome Res 17: pp. 1486-1495 CrossRef
    31. Kunisawa, T (1992) Synonymous codon preferences in bacteriophage T4: a distinctive use of transfer RNAs from T4 and from its host Escherichia coli. J Theor Biol 159: pp. 287-298 CrossRef
    32. Bell-Pedersen, D, Quirk, S, Clyman, J, Belfort, M (1990) Intron mobility in phage T4 is dependent upon a distinctive class of endonucleases and independent of DNA sequences encoding the intron core: mechanistic and evolutionary implications. Nucleic Acids Res 18: pp. 3763-3770 CrossRef
    33. Eddy, SR, Gold, L (1991) The phage T4 nrdB intron: a deletion mutant of a version found in the wild. Genes Dev 5: pp. 1032-1041 CrossRef
    34. Quirk, SM, Bell-Pedersen, D, Tomaschewski, J, Ruger, W, Belfort, M (1989) The inconsistent distribution of introns in the T-even phages indicates recent genetic exchanges. Nucleic Acids Res 17: pp. 301-315 CrossRef
    35. Landthaler, M, Shub, DA (1999) Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. Proc Natl Acad Sci U S A 96: pp. 7005-7010 CrossRef
    36. Landthaler, M, Shen, BW, Stoddard, BL, Shub, DA (2006) I-BasI and I-HmuI: two phage intron-encoded endonucleases with homologous DNA recognition sequences but distinct DNA specificities. J Mol Biol 358: pp. 1137-1151 CrossRef
    37. van Sinderen, D, Karsens, H, Kok, J, Terpstra, P, Ruiters, MH, Venema, G, Nauta, A (1996) Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage r1t. Mol Microbiol 19: pp. 1343-1355 CrossRef
    38. Edgell, DR, Belfort, M, Shub, DA (2000) Barriers to intron promiscuity in bacteria. J Bacteriol 182: pp. 5281-5289 CrossRef
    39. Foley, S, Bruttin, A, Brussow, H (2000) Widespread distribution of a group I intron and its three deletion derivatives in the lysin gene of Streptococcus thermophilus bacteriophages. J Virol 74: pp. 611-618 CrossRef
    40. Besemer, J, Lomsadze, A, Borodovsky, M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29: pp. 2607-2618 CrossRef
    41. Belshaw, R, Katzourakis, A (2005) BlastAlign: a program that uses blast to align problematic nucleotide sequences. Bioinformatics 21: pp. 122-123 CrossRef
    42. Marchler-Bauer, A, Lu, S, Anderson, JB, Chitsaz, F, Derbyshire, MK, DeWeese-Scott, C, Fong, JH, Geer, LY, Geer, RC, Gonzales, NR, Gwadz, M, Hurwitz, DI, Jackson, JD, Ke, Z, Lanczycki, CJ, Lu, F, Marchler, GH, Mullokandov, M, Omelchenko, MV, Robertson, CL, Song, JS, Thanki, N, Yamashita, RA, Zhang, D, Zhang, N, Zheng, C, Bryant, SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39: pp. D225-229 CrossRef
    43. Rice, P, Longden, I, Bleasby, A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16: pp. 276-277 CrossRef
    44. Lowe, TM, Eddy, SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: pp. 955-964 CrossRef
    45. Laslett, D, Canback, B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32: pp. 11-16 CrossRef
    46. Darling, AC, Mau, B, Blattner, FR, Perna, NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14: pp. 1394-1403 CrossRef
    47. Zafar, N, Mazumder, R, Seto, D (2002) CoreGenes: a computational tool for identifying and cataloging 鈥渃ore鈥?genes in a set of small genomes. BMC Bioinformatics 3: pp. 12 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Phage ZZ1, which efficiently infects pathogenic Acinetobacter baumannii strains, is the fifth completely sequenced T4-like Acinetobacter phage to date. To gain a better understanding of the genetic characteristics of ZZ1, bioinformatics and comparative genomic analyses of the T4 phages were performed. Results The 166,687-bp double-stranded DNA genome of ZZ1 has the lowest GC content (34.4%) of the sequenced T4-like Acinetobacter phages. A total of 256 protein-coding genes and 8 tRNA genes were predicted. Forty-three percent of the predicted ZZ1 proteins share up to 73% amino acid identity with T4 proteins, and the homologous genes generally retained the same order and transcriptional direction. Beyond the conserved structural and DNA replication modules, T4 and ZZ1 have diverged substantially by the acquisition and deletion of large blocks of unrelated genes, especially in the first halves of their genomes. In addition, ZZ1 and the four other T4-like Acinetobacter phage genomes (Acj9, Acj61, 133, and Ac42) share a well-organised and highly conserved core genome, particularly in the regions encoding DNA replication and virion structural proteins. Of the ZZ1 proteins, 70, 64, 61, and 56% share up to 86, 85, 81, and 83% amino acid identity with Acj9, Acj61, 133, and Ac42 proteins, respectively. ZZ1 has a different number and types of tRNAs than the other 4 Acinetobacter phages, although some of the ZZ1-encoded tRNAs share high sequence similarity with the tRNAs from these phages. Over half of ZZ1-encoded tRNAs (5 out of 8) are related to optimal codon usage for ZZ1 proteins. However, this correlation was not present in any of the other 4 Acinetobacter phages. Conclusions The comparative genomic analysis of these phages provided some new insights into the evolution and diversity of Acinetobacter phages, which might elucidate the evolutionary origin and host-specific adaptation of these phages.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700