用户名: 密码: 验证码:
Developing antibodies from cholinesterase derived from prokaryotic expression and testing their feasibility for detecting immunogen content in Daphnia magna
详细信息    查看全文
  • 作者:Hong-cui Liu ; Bing-qiang Yuan ; Shao-nan Li
  • 关键词:Daphnia magna ; Cholinesterase (ChE) ; Polymerase chain reaction (PCR) ; Recombinant protein ChE ; Enzyme ; linked immunosorbent assay (ELISA) ; Triazophos ; 大型溞
  • 胆碱酯酶 ; 聚合酶链式反应(PCR) ; 重组胆碱酯酶蛋白 ; 酶联免疫吸附分析法(ELISA) ; S482.3+3
  • 刊名:Journal of Zhejiang University SCIENCE B
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:17
  • 期:2
  • 页码:110-126
  • 全文大小:1,726 KB
  • 参考文献:Abdel-Halim, K.Y., Salama, A.K., El-khateeb, E.N., et al., 2006. Organophosphorus pollutants (OPP) in aquatic environment at Damietta Governorate, Egypt: implications for monitoring and biomarker responses. Chemospher., 63(9):1491–1498. http://​dx.​doi.​org/​10.​1016/​j.​chemosphere.​2005.​09.​019CrossRef
    Anthony, N., Rocheleau, T., Mocelin, G., et al., 1995. Cloning, sequencing and functional expression of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti. FEBS Lett., 368(3):461–465. http://​dx.​doi.​org/​10.​1016/​0014-5793(95)00711-hCrossRef PubMed
    Barata, C., Baird, D.J., Soares, A.M.V.M., et al., 2001. Biochemical factors contributing to response variation among resistant and sensitive clones of Daphnia magna Straus exposed to ethyl parathion. Ecotoxicol. Environ. Saf., 49(2):155–163. http://​dx.​doi.​org/​10.​1006/​eesa.​2001.​2052CrossRef PubMed
    Baslow, M.H., Nigrelli, R.F., 1964. The effects of thermal acclimation on brain cholinesterase of the killifish, Fundulus heteroclitus. Zoologic., 49:41–51.
    Botté, E.S., Smith-Keune, C., Jerry, D.R., 2013. Temperature: a prolonged confounding factor on cholinesterase activity in the tropical reef fish Acanthochromis polyacanthus. Aquat. Toxicol., 140-141:337–339. http://​dx.​doi.​org/​10.​1016/​j.​aquatox.​2013.​06.​021CrossRef PubMed
    Bradford, M.M., 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein dye binding. Anal. Siochem., 72(1-2): 248–254.CrossRef
    Cajaraville, M.P., Bebianno, M.J., Blasco, J., et al., 2000. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci. Total Environ., 247(2-3):295–311. http://​dx.​doi.​org/​10.​1016/​S0048-9697(99)00499-4CrossRef PubMed
    Carvalho, F.D., Machado, I., Martinez, M.S., et al., 2003. Use of atropine-treated Daphnia magna survival for detection of environmental contamination by acetylcholinesterase inhibitors. Ecotoxicol. Environ. Saf., 54(1):43–46. http://​dx.​doi.​org/​10.​1016/​S0147-6513(02)00018-0CrossRef PubMed
    Chen, L., Li, B., Pu, G.Q., 2010. Cloning and sequence analysis of cDNA fragment of acetylcholinesterase gene in Spodoptera litura. Sci. Sericult., 36(1):0138–0142.
    Coelho, S., Oliveira, R., Pereira, S., et al., 2011. Assessing lethal and sub-lethal effects of trichlorfon on different trophic levels. Aquat. Toxicol., 103(3-4):191–198. http://​dx.​doi.​org/​10.​1016/​j.​aquatox.​2011.​03.​003CrossRef PubMed
    Damásio, J., Guilhermino, L., Soares, A.M.V.M., et al., 2007. Biochemical mechanisms of resistance in Daphnia magna exposed to the insecticide fenitrothion. Chemospher., 70(1):74–82. http://​dx.​doi.​org/​10.​1016/​j.​chemosphere.​2007.​07.​026 denCrossRef
    Besten, P.J., Valk, S., van Weerlee, E., et al., 2001. Bioaccumulation and biomarkers in the sea star Asterias rubens (Echinodermata: Asteroidea): a North Sea field study. Mar. Environ. Res., 51(4):365–387. http://​dx.​doi.​org/​10.​1016/​S0141-1136(00)00134-3CrossRef
    Denoyelle, R., Rault, M., Mazzia, C., et al., 2007. Cholinesterase activity as a biomarker of pesticide exposure in Allolobophora chlorotica earthworms living in apple orchards under different management strategies. Environ. Toxicol. Chem., 26(12):2644–2649. http://​dx.​doi.​org/​10.​1897/​06-355.​1CrossRef PubMed
    Diamantino, T.C., Almeida, E., Soares, A.M.V.M., et al., 2003. Characterization of cholinesterases from Daphnia magna Straus and their inhibition by zinc. Bull. Environ. Contam. Toxicol., 71(2):219–225. http://​dx.​doi.​org/​10.​1007/​s00128-003-0153-7CrossRef PubMed
    Duquesne, S., 2006. Effects of an organophosphate on Daphnia magna, at subspeciesal and speciesal levels: implications for population dynamics. Ecotoxicol. Environ. Saf., 65(2):145–150. http://​dx.​doi.​org/​10.​1016/​j.​ecoenv.​2006.​01.​008CrossRef PubMed
    Duquesne, S., Küster, E., 2010. Biochemical, metabolic, and behavioural responses and recovery of Daphnia magna after exposure to an organophosphate. Ecotoxicol. Environ. Saf., 73(3):353–359. http://​dx.​doi.​org/​10.​1016/​j.​ecoenv.​2009.​11.​008CrossRef PubMed
    Elendt, B.P., Bias, W.R., 1990. Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing: effects of the optimization of culture conditions on life history parameters of Daphnia magna. Water Res., 24(9):1157–1167. http://​dx.​doi.​org/​10.​1016/​0043-1354(90)90180-ECrossRef
    Gälli, R., Rich, H.W., Scholtz, R., 1994. Toxicity of organophosphate insecticides and their metabolites to the water flea Daphnia magna, the Microtox test and an acetylcholinesterase inhibition test. Aquat. Toxicol., 30(3):259–269. http://​dx.​doi.​org/​10.​1016/​0166-445X(94)90063-9CrossRef
    Garabrant, D.H., Aylward, L.L., Berent, S., et al., 2009. Cholinesterase inhibition in chlorpyrifos workers: characterization of biomarkers of exposure and response in relation to urinary TCPy. J. Expo. Sci. Environ. Epidemiol., 19(7): 634–642. http://​dx.​doi.​org/​10.​1038/​jes.​2008.​51CrossRef PubMed
    Guilhermino, L., Lopes, M.C., Carvalho, A.P., et al., 1996. Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia magna. Chemospher., 32(4):727–738. http://​dx.​doi.​org/​10.​1016/​0045-6535(95)00360-6CrossRef
    Hackenberger, B.K., Jaric-Perkušic, D., Stepic, S., 2008. Effect of temephos on cholinesterase activity in the earthworm Eisenia fetida (Oligochaeta, Lumbricidae). Ecotoxicol. Environ. Saf., 71(2):583–589. http://​dx.​doi.​org/​10.​1016/​j.​ecoenv.​2007.​11.​008CrossRef PubMed
    Hall, L.M.C., Malcolm, C.A., 1991. The acetylcholinesterase gene of Anopheles stephensi. Cell. Mol. Neurobiol., 11(1): 131–141. http://​dx.​doi.​org/​10.​1007/​BF00712805CrossRef PubMed
    Hill, E.F., 1989. Sex and storage affect cholinesterase activity in blood plasma of Japanese quail. J. Wildl. Dis., 25(4): 580–585. http://​dx.​doi.​org/​10.​7589/​0090-3558-25.​4.​580CrossRef PubMed
    Hogan, J.W., 1970. Water temperature as a source of variation in specific activity of brain acetylcholinesterase of bluegills. Bull. Environ. Contam. Toxicol., 5(4):347–353. http://​dx.​doi.​org/​10.​1007/​BF01539949CrossRef
    Jemec, A., Drobne, D., Tisler, T., et al., 2007. The applicability of acetylcholinesterase and glutathione S-transferase in Daphnia magna toxicity test. Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 144(4):303–309.
    Jiang, H.B., Liu, S.W., Zhao, P.C., et al., 2009. Recombinant expression and biochemical characterization of the catalytic domain of acetylcholinesterase-1 from the African malaria mosquito, Anopheles gambiae. Insect Biochem. Mol. Biol., 39(9):646–653. http://​dx.​doi.​org/​10.​1016/​j.​ibmb.​2009.​07.​002PubMedCentral CrossRef PubMed
    Kaufer, D., Friedman, A., Seidman, S., et al., 1999. Anticholinesterases induce multigenic transcriptional feedback response suppressing cholinergic neurotransmission. Chem. Biol. Interact., 119-120:349–360. http://​dx.​doi.​org/​10.​1016/​S0009-2797(99)00046-0CrossRef PubMed
    Key, P.B., Fulton, M.H., 2002. Characterization of cholinesterase activity in tissues of the grass shrimp (Palaemonetes pugio). Pestic. Biochem. Physiol., 72(3):186–192. http://​dx.​doi.​org/​10.​1016/​S0048-3575(02)00006-8CrossRef
    Khattab, A.D., Ali, L.S., 2007. Immunoassays for avian butyrylcholinesterase: implications for ecotoxicological testing and clinical biomonitoring. Environ. Toxicol. Pharmacol., 24(3):275–285. http://​dx.​doi.​org/​10.​1016/​j.​etap.​2007.​06.​006CrossRef PubMed
    Khattab, A.D., Walker, C.H., Johnston, G., et al., 1994. An ELISA assay for avian serum butyrylcholinesterase: a biomarker for organophosphates. Environ. Toxicol. Chem., 13(10):1661–1667. http://​dx.​doi.​org/​10.​1002/​etc.​5620131016CrossRef
    Kondo, M., Hada, T., Fukui, K., et al., 1995. Enzyme-linked immunosorbent assay (ELISA) for Aleuria aurantia lectinreactive serum cholinesterase to differentiate liver cirrhosis and chronic hepatitis. Clin. Chim. Act., 243(1):1–9. http://​dx.​doi.​org/​10.​1016/​0009-8981(95)06146-0CrossRef
    Li, C.X., Dong, Y.D., Liu, M.D., et al., 2007. Alternative splicing of ace1 gene in Culex pipiens pallens and its effect to enzyme activity. Acta Parasitol. Med. Entomol. Sin., 14(3):153–157 (in Chinese).
    Li, F., Han, Z.J., 2002. Cloning and sequencing of two acetylcholinesterase cDNA fragments from cotton aphid, Aphis gossypii Glover. Zool. Res., 23(5):444–448 (in Chinese).
    Li, S.N., Tan, Y.J., 2011. Hormetic response of cholinesterase from Daphnia magna in chronic exposure to triazophos and chlorpyrifos. J. Environ. Sci., 23(5):852–859. http://​dx.​doi.​org/​10.​1016/​S1001-0742(10)60516-5CrossRef
    Li, S.N., Xie, X.C., Tan, Y.J., et al., 2005. Induction of triazophos to brain acetylcholinesterase from topmouth gudgeon, Pseudorasbora parva. Chin. J. Pest. Sci., 7(1): 59–62 (in Chinese).
    Lin, T., Li, L.N., Chang, R.L., et al., 2007. Cloning and sequence analysis of acetylcholinease gene of Pseudophacopteron canarium. J. Jilin Agric. Univ., 29(4): 368–370 (in Chinese).
    Liu, H.C., Yuan, B.Q., Li, S.N., 2012a. Altered quantities and in vivo activities of cholinesterase from Daphnia magna in sub-lethal exposure to organophosphorus insecticides. Ecotoxicol. Environ. Saf., 80:118–125. http://​dx.​doi.​org/​10.​1016/​j.​ecoenv.​2012.​02.​014CrossRef PubMed
    Liu, H.C., Yang, Y.X., Li, S.N., 2012b. Quantitative analysis of cholinesterase from Daphnia magna by indirect and noncompetitive enzyme-linked immunosorbent assay. J. Zhejiang Univ. (Agric. Life Sci)., 38(3):347–354 (in Chinese).
    Monserrat, J.M., Bianchini, A., 1998. Some kinetic and toxicological characteristics of thoracic ganglia cholinesterase of Chasmagnathus granulate (Decapoda, Grapsidae). Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 120(2): 193–199.
    Ni, X.Y., Tomita, T., Kasai, S., et al., 2003. cDNA and deduced protein sequence of acetylcholinesterase from the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Appl. Entomol. Zool., 38(1):49–56. http://​dx.​doi.​org/​10.​1303/​aez.​2003.​49CrossRef
    Phillips, T.A., Summerfelt, R.C., Atchison, G.J., 2002. Environmental, biological, and methodological factors affecting cholinesterase activity in walleye (Stizostedion vitreum). Arch. Environ. Contam. Toxicol., 43(1):75–80. http://​dx.​doi.​org/​10.​1007/​s00244-002-1134-2CrossRef PubMed
    Printes, L.B., Fellowes, M.D.E., Callaghan, A., 2008. Clonal variation in acetylcholinesterase biomarkers and life history traits following OPexposure in Daphnia magna. Ecotoxicol. Environ. Saf., 71(2):519–526. http://​dx.​doi.​org/​10.​1016/​j.​ecoenv.​2007.​12.​001CrossRef PubMed
    Printes, L.B., Fernandes, M.N., Espíndola, E.L.G., 2011. Laboratory measurements of biomarkers and individual performances in Chironomus xanthus to evaluate pesticide contamination of sediments in a river of southeastern Brazil. Ecotoxicol. Environ. Saf., 74(3):424–430. http://​dx.​doi.​org/​10.​1016/​j.​ecoenv.​2010.​10.​033CrossRef PubMed
    Rattner, B.A., 1982. Diagnosis of anticholinesterase poinsoning in birds: effects of environmental temperature and underfeeding on cholinesterase activity. Environ. Toxicol. Chem., 1(4):329–335. http://​dx.​doi.​org/​10.​1002/​etc.​5620010408CrossRef
    Sáenz, L.A., Seibert, E.L., Zanette, J., et al., 2010. Biochemical biomarkers and metals in Perna perna mussels from mariculture zones of Santa Catarina, Brazil. Ecotoxicol. Environ. Saf., 73(5):796–804. http://​dx.​doi.​org/​10.​1016/​j.​ecoenv.​2010.​02.​015CrossRef PubMed
    Sanchez-Hernandez, J.C., Fossi, M.C., Leonzio, C., et al., 1998. Use of biochemical biomarkers as a screening tool to focus the chemical monitoring of organic pollutants in the Biobio river basin (Chile). Chemospher., 37(4):699–710. http://​dx.​doi.​org/​10.​1016/​S0045-6535(98)00085-xCrossRef
    Scaps, P., Borot, O., 2000. Acetylcholinesterase activity of the polychaete Nereis diversicolor: effects of temperature and salinity. Comp. Biochem. Physiol. C: Pharmacol. Toxicol. Endocrinol., 125(3):377–383. http://​dx.​doi.​org/​10.​1016/​S0742-8413(00)00087-6CrossRef
    Stien, X., Percic, P., Gnassia-Barelli, M., et al., 1998. Evaluation of biomarkers in caged fishes and mussels to assess the quality of waters in a bay of the NWMediterranean Sea. Environ. Pollut., 99(3):339–345. http://​dx.​doi.​org/​10.​1016/​S0269-7491(98)00013-xCrossRef PubMed
    Sturm, A., Hansen, P.D., 1999. Altered cholinesterase and monooxygenase levels in Daphnia magna and Chironomus riparius exposed to environmental pollutants. Ecotoxicol. Environ. Saf., 42(1):9–15. http://​dx.​doi.​org/​10.​1006/​eesa.​1998.​1721CrossRef PubMed
    Sturm, A., Wogram, J., Hansen, P.D., et al., 1999. Potential use of cholinesterase in monitoring low levels of organophosphates in small streams: natural variability in threespined stickleback (Gasterosteus aculeatus) and relation to pollution. Environ. Toxicol. Chem., 18(2):194–200. http://​dx.​doi.​org/​10.​1002/​etc.​5620180214 vanCrossRef
    Oosterom, J., King, S.C., Negri, A., et al., 2010. Investigation of the mud crab (Scylla serrata) as a potential bio-monitoring species for tropical coastal marine environments of Australia. Mar. Pollut. Bull., 60(2):283–290. http://​dx.​doi.​org/​10.​1016/​j.​marpolbul.​2009.​09.​007CrossRef PubMed
    Vesela, S., Kuca, K., Jun, D., 2006. Toxicity of the nerve agent tabun to Daphnia magna, a new experimental species in military toxicology. Chem. Ecol., 22(2):175–180. http://​dx.​doi.​org/​10.​1080/​0275754060057938​3CrossRef
    Villatte, F., Bachmann, T.T., 2002. How many genes encode cholinesterase in arthropods? Pestic. Biochem. Physiol., 73(2):122–129.CrossRef
    Xuereb, B., Noury, P., Felten, V., et al., 2007. Cholinesterase activity in Gammarus pulex (Crustacea Amphipoda): characterization and effects of chlorpyrifos. Toxicolog., 236(3):178–189. http://​dx.​doi.​org/​10.​1016/​j.​tox.​2007.​04.​010CrossRef
    Xuereb, B., Chaumot, A., Mons, R., et al., 2009. Acetylcholinesterase activity in Gammarus fossarum (Crustacea Amphipoda): intrinsic variability, reference levels, and a reliable tool for field surveys. Aquat. Toxicol., 93(4): 225–233. http://​dx.​doi.​org/​10.​1016/​j.​aquatox.​2009.​05.​006CrossRef PubMed
    Yang, L.G., Hu, S.C., Wei, P.H., et al., 1998. Enzyme Immunoassay. Nanjing University Press, Nanjing, p.279–281 (in Chinese).
    Yang, Y.X., 2010. Immunoassays for Daphnia magna cholinesterases: a biomarker for organophosphates. Master’s Thesis, Zhejiang University, Hangzhou, p.1–95 (in Chinese).
    Yang, Y.X., Niu, L.Z., Li, S.N., 2013. Purification and studies on characteristics of cholinesterases from Daphnia magna. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol)., 14(4): 325–335. http://​dx.​doi.​org/​10.​1631/​jzus.​B1200113CrossRef
    Zhang, T., 2008. Expression of Drosophila melanogaster acetylcholinesterase (AchE) gene in Pichia pastoris. Master’s Thesis, Chongqing University, Chongqing, p.1–52 (in Chinese).
    Zhou, M.J., Zhang, C.L., Richard, P., et al., 2000. Choline oxidase: a useful tool for high-throughput assays of acetylcholinesterase, phospholipase D, phosphatidylcholinespecific phospholipase C, and sphingomyelinase. Proc. SPI., 3926:166–171. http://​dx.​doi.​org/​10.​1117/​12.​380507CrossRef
  • 作者单位:Hong-cui Liu (1)
    Bing-qiang Yuan (2)
    Shao-nan Li (1)

    1. Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, China
    2. Institute of Technology Innovation, Zhejiang University, Hangzhou, 310007, China
  • 刊物主题:Biomedicine general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1862-1783
文摘
To yield cholinesterase (ChE) from prokaryotic expression, the ChE gene that belongs to Daphnia magna was amplified by reverse transcription-polymerase chain reaction (RT-PCR) using forward primer 5′-CCCYGGNGCSAT GATGTG-3′ and reverse primer 5′-GYAAGTTRGCCCAATATCT-3′. To express the gene, one sequence of the amplified DNA, which was able to encode a putative protein containing two conserved carboxylesterase domains, was connected to the prokaryotic expression vector PET-29a(+). The recombinant vector was transformed into Escherichia coil BL21 (DE3). Protein expression was induced by isopropy-D-thiogalactoside. The expressed ChE was used as an immunogen to immunize BALB/c mice. The obtained antibodies were tested for their specificity towards crude enzymes from species such as Alona milleri, Macrobrachium nipponense, Bombyx mori, Chironomus kiiensis, Apis mellifera, Eisenia foetida, Brachydanio rerio, and Xenopus laevis. Results indicated that the antibodies had specificity suitable for detecting ChE in Daphnia magna. A type of indirect and non-competitive enzyme-linked immunosorbent assay (IN-ELISA) was used to test the immunoreactive content of ChE (ChE-IR) in Daphina magna. The detection limit of the IN-ELISA was found to be 14.5 ng/ml at an antiserum dilution of 1:22 000. Results from tests on Daphnia magna exposed to sublethal concentrations of triazophos indicated a maximal induction of 57.2% in terms of ChE-IR on the second day after the animals were exposed to a concentration of 2.10 μg/L triazophos. Testing on animals acclimatized to a temperature of 16 °C indicated that ChE-IR was induced by 16.9% compared with the ChE-IR content detected at 21 °C, and the rate of induction was 25.6% at 10 °C. The IN-ELISA was also used to test the stability of ChE-IR in collected samples. Repeated freezing and thawing had no influence on the outcome of the test. All these results suggest that the polyclonal antibodies developed against the recombinant ChE are as efficient as those developed against the native ChE in detecting ChE content in Daphnia magna. Keywords Daphnia magna Cholinesterase (ChE) Polymerase chain reaction (PCR) Recombinant protein ChE Enzyme-linked immunosorbent assay (ELISA) Triazophos

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700