用户名: 密码: 验证码:
Highly catalytic spherical carbon nanocomposites allowing tunable activity via controllable Au-Pd doping
详细信息查看全文 | 推荐本文 |
摘要
We report the synthesis of highly catalytic spherical carbon composite particles with Au-Pd bimetallic nanoparticle doping using a microwave-assisted technique that allows control over the location of the nanoparticles (NPs), putting them into stable interior, but still near-surface locations (within a 100 nm thick shell). First, composite particles with Pd NPs inside of nanoporous carbon spheres (CSs) were synthesized. Subsequent immersion of the composite particles in HAuCl4 solutions containing PVP led to an addition of Au near the Pd. Au-Pd/CS composites with Au:Pd atomic ratios varying from 0.4 to 4.6 were prepared. The growth of Au and its location relative to the carbon鈥檚 surface and the Pd are discussed. The catalytic activity towards the reduction of 4-nitrophenol is tunable via the Au:Pd atomic ratio. Optimizing the composition increases the activity a hundredfold over that of the corresponding monometallic Pd/CS. The catalytic activity arises from the synergy between different contributing mechanisms, here especially the interaction between the carbon matrix and metals, metal-metal interfaces, and the hydrogen absorption capabilities of Pd.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700