用户名: 密码: 验证码:
Structural, transport and spectroscopic properties of Ti4+ substituted magnetite: Fe3鈭?span style='font-style: italic'>xTixO4
详细信息查看全文 | 推荐本文 |
摘要
The effect of Ti4+ ion on the formation of magnetite, which were prepared by solid-state route reaction method, were studied by resistivity, Raman and 57Fe M枚ssbauer spectrometry. Resistivity measured in the range of 10 < T < 300 K for Ti4+ magnetite Fe3鈭?em>xTixO4 exhibit first order phase transformations at the Verwey transition Tv for Fe3O4, Fe2.98Ti0.02O4 and Fe2.97Ti0.03O4 at 123 K, 121 K and 118 K, respectively. No first order phase transition was observed for Fe2.9Ti0.1O4 and small polaron model retraces the semiconducting resistivity behavior with activation energy of about 72 meV. The changes in Raman spectra as a function of doping show that the changes are gradual for samples with higher Ti doping. The Raman active mode for Fe2.9Ti0.1O4 at 鈮?34.4 cm鈭? is shifted as compared to parent Fe3O4 at 鈮?70 cm鈭?, inferring that Mn2+ ions are located mostly on the octahedral sites. 57Fe M枚ssbauer spectroscopy probes the site preference of the substitutions and their effect on the hyperfine magnetic fields confirms that Ti4+ ions are located mostly on the octahedral sites of the Fe3鈭?em>xTixO4 spinel structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700