用户名: 密码: 验证码:
TRPM2 channel protective properties of N-acetylcysteine on cytosolic glutathione depletion dependent oxidative stress and Ca2+ influx in rat dorsal root ganglion
详细信息查看全文 | 推荐本文 |
摘要
N-acetylcysteine (NAC) is a thiol-containing (sulphydryl donor) antioxidant, which contributes to regeneration of glutathione (GSH) and also acts through a direct reaction with free radicals. Thiol depletion has been implicated in the neurobiology of sensory neurons and pain. We reported recently an activator role of intracellular GSH depletion on calcium influx through transient receptor potential melastatin-like 2 (TRPM2) channels in rat dorsal root ganglion (DRG). NAC may have a protective role on calcium influx through regulation of TRPM2 channels in the neurons. Therefore, we tested the effects of NAC on TRPM2 channel currents in cytosolic GSH depleted DRG in rats.

DRG neurons were freshly isolated from rats and the neurons were incubated for 24 h with buthionine sulfoximine (BSO). In whole-cell patch clamp experiments, TRPM2 currents in the DRG incubated with BSO were gated by H2O2. TRPM2 channels current densities, cytosolic free Ca2+ content, and lipid peroxidation values in the neurons were higher in H2O2 and BSO + H2O2 group than in controls; however GSH and GSH peroxidase (GSH-Px) values were decreased. BSO + H2O2-induced TRPM2 channel gating was totally inhibited by extracellular NAC and partially inhibited by 2-aminoethyl diphenylborinate. GSH-Px activity, lipid peroxidation and GSH levels in the DRG neurons were also modulated by NAC.

In conclusion, we observed a modulator role of NAC on Ca2+ influx through a TRPM2 channel in intracellular GSH depleted DRG neurons. NAC incubation before BSO exposure appears to be more protective than NAC incubation after BSO exposure. Since cytosolic thiol group depletion is a common feature of neuropathic pain, our findings are relevant to the etiology and treatment of pain neuropathology in DRG neurons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700