用户名: 密码: 验证码:
HIV-1 mRNA electroporation of PBMC: A simple and efficient method to monitor T-cell responses against autologous HIV-1 in HIV-1-infected patients
详细信息查看全文 | 推荐本文 |
摘要
Efficient monitoring of HIV-1-specific T-cells is crucial for the development of HIV-1 vaccines and immunotherapies. Currently, mainly peptides and vaccinia vectors are used for detection of HIV-1-specific cytotoxic T-lymphocytes (CTL), however, as HIV-1 is a variable virus, it is unknown to what extent the T-cell response against the autologous virus is under- or overestimated by using antigens from heterologous viral strains. Therefore, we established a new method for immunomonitoring of CTL using electroporation of peripheral blood mononuclear cells (PBMC) with mRNA derived from autologous viral strains. From six HIV-1-infected patients virus derived mRNA was produced after PCR-based cloning of autologous gag (n = 5) and/or nef genes (n = 3) from plasma and electroporated into PBMC from patients and healthy donors. Electroporation of PBMC with mRNA resulted in efficient protein expression with good induction of 纬-interferon (纬-IFN) release by specific T-cells comparable to peptide pools and better than recombinant vaccinia viruses. Three mRNA encoded autologous Gag proteins and one autologous mRNA encoded Nef protein were better recognized by autologous PBMC in comparison to heterologous mRNA encoded Gag or Nef proteins (SF2 or HXB2). However, in one case each, mRNA encoded autologous Gag or Nef, respectively, was recognized less efficiently due to the presence of CTL escape mutations. In summary, electroporation of PBMC with mRNA is a very efficient, easy and rapid method for immunomonitoring of HIV-1-specific T-cell responses against autologous viral strains. Our data demonstrate that patients' CTL responses against autologous viral strains may be under- or overestimated by using antigens from heterologous viral strains.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700