用户名: 密码: 验证码:
Deep oxidation of glucose in enzymatic fuel cells through a synthetic enzymatic pathway containing a cascade of two thermostable dehydrogenases
详细信息查看全文 | 推荐本文 |
摘要
A synthetic enzymatic pathway was designed for the deep oxidation of glucose in enzymatic fuel cells (EFCs). Polyphosphate glucokinase converts glucose to glucose-6-phosphate using low-cost, stable polyphosphate rather than costly ATP. Two NAD-dependent dehydrogenases (glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) that were immobilized on the bioanode were responsible for generating two NADH per glucose-6-phosphate (i.e., four electrons were generated per glucose via a diaphorase-vitamin K3 electron shuttle system at the anode). Additionally, to prolong the enzyme lifetime and increase the power output, all of the recombinant enzymes that originated from thermophiles were expressed in Escherichia coli and purified to homogeneity. The maximum power density of the EFC with two dehydrogenases was 0.0203 mW cm鈭? in 10 mM glucose at room temperature, which was 32%higher than that of an EFC with one dehydrogenase, suggesting that the deep oxidation of glucose had occurred. When the temperature was increased to 50 掳C, the maximum power density increased to 0.322 mW cm鈭?, which was approximately eight times higher than that based on mesophilic enzymes at the same temperature. Our results suggest that the deep oxidation of glucose could be achieved by using multiple dehydrogenases in synthetic cascade pathways and that high power output could be achieved by using thermostable enzymes at elevated temperatures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700