用户名: 密码: 验证码:
陆架斜坡海域上坡波导环境中声能量急剧下降现象及其定量分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation and quantitative analysis on the acoustic energy tobogganing in the upslope waveguide of continental slope area
  • 作者:谢磊 ; 孙超 ; 刘雄厚 ; 蒋光禹 ; 孔德智
  • 英文作者:Xie Lei;Sun Chao;Liu Xiong-Hou;Jiang Guang-Yu;Kong De-Zhi;Key Laboratory of Ocean Acoustics and Sensing Northwestern Polytechnical University, Ministry of Industry and Information Technology;School of Marine Science and Technology, Northwestern Polytechnical University;
  • 关键词:上坡传播 ; 声能量急剧下降 ; 声源位置 ; 陆架斜坡海域
  • 英文关键词:upslope;;transmission loss;;source location;;energy tobogganing
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西北工业大学海洋声学信息感知工业和信息化部重点实验室;西北工业大学航海学院;
  • 出版日期:2017-09-19 13:07
  • 出版单位:物理学报
  • 年:2017
  • 期:v.66
  • 基金:国家自然科学基金(批准号:11534009)资助的课题~~
  • 语种:中文;
  • 页:WLXB201719013
  • 页数:11
  • CN:19
  • ISSN:11-1958/O4
  • 分类号:123-133
摘要
深度较浅的声源其辐射声波在陆架斜坡海域上坡传播时,在斜坡顶端会出现声能量急剧下降现象.利用射线声学模型分析了造成这一现象的原因,并根据抛物方程声场模型计算的深海和浅海平均传播损失定义了"声能量急剧下降距离",定量分析了声源位置对该现象的影响.结果表明:声源深度对"声能量急剧下降距离"影响较大,而声源与斜坡底端水平距离对其影响较小;当声源深度变大时,部分掠射角较小的声线最终能够达到斜坡顶端,致使"声能量急剧下降距离"增大,继续增加声源深度,将导致上坡声能量急剧下降现象消失.利用抛物方程声场模型对陆架斜坡海域上坡声传播进行数值仿真,结合"声能量急剧下降距离"的定义,计算并比较了声源位置不同时该距离的变化,数值计算结果验证了理论分析.
        The toboggan in acoustic energy will appear at the top of the slope when the sound wave radiated by a shallow water source propagates in an upslope waveguide of the continental slope area. The grazing angles of the sound rays reflected by the ocean bottom will increase in the upslope waveguide, which leads to the acoustic energy tobogganing in the shallow water at the top of the slope. In this paper, the range of acoustic energy tobogganing(RAET) at a specified depth is defined to study this phenomenon. The transmission loss(TL) is calculated by the parabolic-equation acoustic model that ie applied to the range-dependent waveguide. The RAET is defined by an average transmission loss in the abyssal water and in the shallow water corresponding to the depth. The acoustic energy toboggan is explained using the ray-based model, and the effects of source location change on it are demonstrated, including the source depth and the range away from the bottom of the slope. The sound rays from a shallow water source which transmit in the upslope waveguide can be divided into two types: one is incident to the interface vertically and will return to the water along the original path; the other is that the rays will transmit towards the sound source(the deep sea direction). However, all of them will no longer spread forward after they have transmitted to a certain distance, leading to the acoustic energy tobogganing in shallow water. The analysis results show that the RAET becomes larger with source depth increasing,and the energy toboggan phenomenon will disappear when the source is deep enough. However, the range of source away from the slope bottom has less effect on RAET. Numerical simulations are conducted in a continental upslope environment by the RAM program based on the split-step Pade algorithm for the parabolic equation. The simulation results show as follows. 1) The TL will increase rapidly after the waves have transmitted to a certain range away from the bottom of the slope when the source depth is 110 m, and the TLs is 140-160 dB propagating to the shallow water at the top of the slope. 2) The RAET will enlarge orderly when the source depths are 110 m, 550 m and 800 m respectively,and the energy toboggan phenomenon will disappear when the source depth is more than 800 m. 3) Fix the source depth at 110 m and move it along the deep sea, then the RAET will greatly varies when the distance between the source and the slope bottom changes ina range of 1-15 km. However, the RAET remain almost constant at 69.8 km when the distance between the source and the slope bottom changes in a range of 16-50 km.
引文
[1]Xie L,Sun C,Liu X H,Jiang G Y 2016 Acta Phys.Sin.65 144303(in Chinese)[谢磊,孙超,刘雄厚,蒋光禹2016物理学报65 144303]
    [2]Rutherford S R 1979 J.Acoust.Soc.Am.66 1482
    [3]Pierce A D 1965 J.Acoust.Soc.Am.37 19
    [4]Miller J F,Nagl A,Uberall H 1986 J.Acoust.Soc.Am.79 562
    [5]Jensen F B,Kuperman W A 1980 J.Acoust.Soc.Am.67 1564
    [6]Jensen F B,Tindle C T 1987 J.Acoust.Soc.Am.82211
    [7]Pierce A D 1982 J.Acoust.Soc.Am.72 523
    [8]Graves R D,Nagl A,Uberall H,Zarur G L 1975 J.Acoust.Soc.Am.58 1171
    [9]Nagl A,Uberall H,Haug A J,Zarur G L 1978 J.Acoust.Soc.Am.63 739
    [10]Milder D M 1969 J.Acoust.Soc.Am.46 1259
    [11]Wang N,Huang X S 2001 Sci.Sin.Ser.A 9 857(in Chinese)[王宁,黄晓圣2001中国科学(A辑)9 857]
    [12]Arnold J M,Felsen L B 1983 J.Acoust.Soc.Am.731105
    [13]Rousseau T H,Jacobson W L 1985 J.Acoust.Soc.Am.78 1713
    [14]Carey W M,Gereben I B 1987 J.Acoust.Soc.Am.81244
    [15]Dosso S E,Chapman N R 1987 J.Acoust.Soc.Am.81258
    [16]Carey W M 1986 J.Acoust.Soc.Am.79 49
    [17]Qin J X,Zhang R H,Luo W Y,Wu L X,Jiang L,Zhang B 2014 Acta Acust.39 145(in Chinese)[秦继兴,张仁和,骆文于,吴立新,江磊,张波2014声学学报39 145]
    [18]Jensen F B,Kuperman W A,Portor M B,Schmidt H2000 Computational Ocean Acoustics(New York:AIP Press/Springer)p326
    [19]Collins M D 1993 J.Acoust.Soc.Am.93 1736

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700