用户名: 密码: 验证码:
海上晃荡对中间介质气化器内部液位波动的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The effect of offshore sloshing on the liquid level fluctuation inside the intermediate fluid vaporizer
  • 作者:董龙飞 ; 李玉星 ; 韩辉
  • 英文作者:DONG Longfei;LI Yuxing;HAN Hui;China University of Petroleum (East China);
  • 关键词:中间介质气化器 ; 晃荡 ; 浮式液化天然气 ; 数值模拟
  • 英文关键词:intermediate fluid vaporizer;;sloshing;;floating liquefied natural gas;;numerical simulation
  • 中文刊名:YQCY
  • 英文刊名:Oil & Gas Storage and Transportation
  • 机构:中国石油大学(华东);
  • 出版日期:2017-09-26 08:45
  • 出版单位:油气储运
  • 年:2018
  • 期:v.37;No.349
  • 基金:国家自然科学基金青年基金项目“浮式天然气液化过程中低温冷剂降膜流动与传热特性研究”,51604294
  • 语种:中文;
  • 页:YQCY201801021
  • 页数:7
  • CN:01
  • ISSN:13-1093/TE
  • 分类号:108-114
摘要
中间介质气化器(Intermediate Fluid Vaporizer,IFV)是浮式LNG接收站关键设备之一,由于容易受到海上风浪影响,IFV内部的液位波动会影响设备的换热性能。采用三维数值模拟方法,结合Fluent计算软件,编写了非稳态晃荡边界条件,对IFV内部中间介质腔内液体的晃荡运动进行了模拟。分析了不同晃荡幅度、晃荡频率及中间介质的充灌液位对介质腔内液位波动的影响。研究表明:当晃荡角度在3°~10°之间、晃荡频率在0.1~1 Hz之间时,中间介质充灌量的安全液位为50%;中间介质液面随晃荡角度的增加,晃荡周期的减小,液面波动愈加剧烈,从而为LNG的安全输送提供了借鉴与参考。
        Intermediate fluid vaporizer(IFV) is one of the key equipments at floating LNG maritime terminal stations. Due to the effect of sea wind and waves, the liquid level fluctuation inside the IFV can impact the heat exchange performance of the equipment. In this paper, the unsteady sloshing boundary conditions were worked out by Fluent calculation software according to 3D numerical simulation method. Then, the sloshing motion of the liquid in the intermediate fluid chamber inside the IFV was simulated. And finally, the effects of sloshing amplitude, sloshing frequency and intermediate fluid filling level on the fluid level fluctuation in the intermediate fluid chamber were analyzed. It is shown that the safe filling level of intermediate fluid is 50% when sloshing angle is in the range of 3°-10° and sloshing frequency is in the range of 0.1-1 Hz. The fluctuation of intermediate fluid level becomes more and more intense with the increase of sloshing angle and the decrease of sloshing cycle. The research results provide the reference for safe LNG transportation.
引文
[1]潘盼,简朝明,王丽静.陆上和海上LNG接收站建设方案比较[J].石油天然气学报,2014,36(8):173-177.PAN P,JIAN Z M,WANG L J.The comparison of onshore and offshore LNG receiving station construction scheme[J].Journal of Oil and Gas Technology,2014,36(8):173-177.
    [2]刘丰,李晖,田朝阳,等.液化天然气(LNG)中间介质气化器(IFV)的研究开发[C].绍兴:全国换热器学术会议,2015:43-47.LIU F,LI H,TIAN Z Y,et al.The research and development of liquefi ed natural gas intermediate fl uid evaporator[C].Shaoxing:National Conference of Heat Exchanger,2015:43-47.
    [3]蔡宪和,秦锋.中间介质气化器国产化关键技术研究[J].中国海上油气,2013,25(4):59-62.CAI X H,QIN F.The key technology research of intermediate fluid evaporator localization[J].China Offshore Oil and Gas,2013,25(4):59-62.
    [4]陈永东,陈学冬.我国大型换热器的技术进展[J].机械工程学报,2013,49(10):134-143.CHEN Y D,CHEN X D.Technical progress of large heat exchanger in our country[J].Journal of Mechanical Engineering,2013,49(10):134-143.
    [5]陈永东.大型LNG气化器的选材与结构研究[J].压力容器,2007,24(11):40-47.CHEN Y D.Material choice and structure research of large LNGvaporizer[J].Pressure Vessel Technology,2007,24(11):40-47.
    [6]王彦,冷绪林,简朝明,等.LNG接收站气化器的选择[J].油气储运,2008,27(3):47-49.WANG Y,LENG X L,JIAN Z M,et al.The choice of vaporizer in LNG receiving station[J].Oil&Gas Storage and Transportation,2008,27(3):47-49.
    [7]裘栋.LNG项目气化器的选型[J].化工设计,2011,21(4):19-22.QIU D.Type selection of evaporator for LNG project[J].Chemical Engineering Design,2011,21(4):19-22.
    [8]宋坤,衣鹏.LNG中间介质气化器换热分析[J].化学工程与设备,2012(10):75-77.SONG K,YI P.The heat transfer analysis of LNG intermediate fluid vaporizer[J].Chemical Engineering and Equipment,2012(10):75-77.
    [9]白宇恒,廖勇,陆永康,等.大型LNG中间介质气化器换热面积计算方法[J].天然气与石油,2013,31(3):31-35.BAI Y H,LIAO Y,LU Y K,et al.The method to calculate heat transfer areas in LNG intermediate fluid vaporizer[J].Natural Gas and Oil,2013,31(3):31-35.
    [10]朱艳艳,贺同强,管西龙,等.IFV低温性能试验装置设计[J].山东化工,2014,43(3):134-136.ZHU Y Y,HE T Q,GUAN X L,et al.Design of IFVperformance testing equipment at low temperature[J].Shandong Chemical Industry,2014,43(3):134-136.
    [11]王博杰,匡以武,齐超,等.中间介质气化器中超临界LNG换热过程分析[J].化工学报,2015,66(增刊2):220-225.WANG B J,KUANG Y W,QI C,et al.Analysis of heat transfer to supercritical LNG in intermediate fl uid vaporizer[J].CIESC Journal,2015,66(S2):220-225.
    [12]佚名.我国首台LNG中间介质气化器研制成功打破日垄断[J].煤气与热力,2014,34(11):6.Anonymity.China’s fi rst LNG intermediate fl uid vaporizer is successfully developed and breaks the monopoly of Japan[J].Gas and Heat,2014,34(11):6.
    [13]高国玉,蒋明维.中间介质加热型乙烯汽化器设计压力探讨[J].炼油技术与工程,2014,44(4):41-44.GAO G Y,JIANG M W.Discussion on design pressure of ethylene vaporizer[J].Petroleum Refi nery Engineering,2014,44(4):41-44.
    [14]梅鹏程,邓春峰,邓欣.LNG气化器的分类及选型设计[J].化学工程与设备,2016(5):65-70.MEI P C,DENG C F,DENG X.The classifi cation and selection of designs for LNG vaporizer[J].Chemical Engineering&Equipment,2016(5):65-70.
    [15]KIM Y.Numerical simulation of sloshing flows with impact load[J].Applied Ocean Research,2001,23(1):53-62.
    [16]CHEN H Y,LI Y X,SUN F F,et al.Numerical simulation of liquid sloshing characteristics in LNG FPSO containers[J].Journal of China University of Petroleum,2011,35(4):134-139.
    [17]HAKAN A,ERDEM U.Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing[J].Ocean Engineering,2005,32(11):1503-1516.
    [18]顾妍.海上浮动平台低温液体动态储运的数值模拟与实验研究[D].上海:上海交通大学,2012:57-88.GU Y.Numerical simulation and experimental investigation of dynamic transportation of cryogenic liquid on FPSO[D].Shanghai:Shanghai Jiao Tong University,2012:57-88.
    [19]刘丰,李晖,张贤福,等.海工况液化天然气(LNG)中间介质气化器(IFV)的研究开发[J].化工进展,2015,34(1):99-103.LIU F,LI H,ZHANG X F,et al.Development and manufacture of LNG intermediate fluid vaporizer used in sea water condition[J].Chemical Industry and Engineering Progress,2015,34(1):99-103.
    [20]陶文铨.数值传热学[M].2版.西安:西安交通大学出版社,2001:54.TAO W Q.Numeirical heat transfer[M].2nd ed.Xi'an:Xi'an Jiaotong University Press,2001:54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700