用户名: 密码: 验证码:
煤矿酸性矿井水主动式生物修复中铁的行为与归宿
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Behavior and fate of Fe in the active bioremediation of acidic coal mine drainage
  • 作者:盛益之 ; 王广才 ; 刘莹 ; 李广贺
  • 英文作者:SHENG Yizhi;WANG Guangcai;LIU Ying;LI Guanghe;School of Environment,Tsinghua University,State Key Joint Laboratory of Environment Simulation and Pollution Control;School of Water Resources and Environment,China University of Geosciences(Beijing);State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences(Beijing);
  • 关键词:酸性矿井水 ; Fe(Ⅱ)氧化 ; 生物反应器 ; 施氏矿物
  • 英文关键词:acid mine drainage;;Fe(Ⅱ)oxidation;;bioreactor;;schwertmannite
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:清华大学环境学院环境模拟与污染控制国家重点联合实验室;中国地质大学(北京)水资源与环境学院;中国地质大学(北京)生物地质与环境地质国家重点实验室;
  • 出版日期:2018-06-15 13:13
  • 出版单位:地学前缘
  • 年:2018
  • 期:v.25;No.132
  • 基金:国家自然科学基金项目(41702262);; 中国博士后基金项目(2017M610927)
  • 语种:中文;
  • 页:DXQY201804031
  • 页数:8
  • CN:04
  • ISSN:11-3370/P
  • 分类号:305-312
摘要
酸性条件下Fe(Ⅱ)的生物氧化过程可以被有效应用于煤矿酸性矿井水修复中,但是Fe行为与归宿的不确定性增加了应用难度。本研究通过对某煤矿酸性矿井水场地发生的生物地球化学过程进行监测,富集培养场地沉积物嗜酸微生物群落,进行室内恒化生物反应器连续流实验,探究微生物作用下Fe及其他金属离子的行为与归宿。研究表明,Fe的形态转化是场地和反应器中最主要的生物地球化学过程。当pH<2.7时,反应更倾向于产生溶解性Fe(Ⅲ);当2.7        Biotic low-pH Fe(Ⅱ)oxidation can be an effective component of the remediation system for acidic coal mine drainage.However,application of such system is limited because of uncertainties associated with Fe behavior and fate.By monitoring biogeochemical process at an acidic coal mine drainage site,we obtained enriched indigenous sediment microbes to explore the behavior and fate of Fe and other metals under microbial-mediated condition in a chemostatic bioreactor.As the results illustrate,transformation of Fe species was the major biogeochemical process both at field site and in a bioreactor.At pH<2.7,redox reactions were more prone to produce soluble Fe(Ⅲ);whereas,at 2.7
引文
[1]丛志远,赵峰华,郑晓燕.煤矿酸性矿井水研究进展[J].能源环境保护,2002,16(5):8-12.
    [2]赵峰华,孙红福,李文生.煤矿酸性矿井水中有害元素的迁移特性[J].煤炭学报,2007,32(3):39-44.
    [3]FENG Q,LI T,QIAN B,et al.Chemical characteristics and utilization of coal mine drainage in China[J].Mine Water and the Environment,2014,33(3):276-286.
    [4]KIRBY C S,BRADY J A E.Field determination of Fe2+oxidation rates in acid mine drainage using a continuouslystirred tank reactor[J].Applied Geochemistry,1998,13(4):509-520.
    [5]CRAVOTTA C A III.Dissolved metals and associated constituents in abandoned coal-mine discharges,Pennsylvania,USA.Part 1:constituent quantities and correlations[J].Applied Geochemistry,2008,23(2):166-202.
    [6]LARSON L N,SNCHEZ-ESPAA J,BURGOS W.Rates of low-pH biological Fe(II)oxidation in the AppalachianBituminous Coal Basin and the Iberian Pyrite Belt[J].Applied Geochemistry,2014,47:85-98.
    [7]王智美,陈炳辉,江春苗,等.粤北大宝山酸性矿山废水氧化亚铁硫杆菌及其相关性能研究[J].中山大学学报(自然科学版),2010,49(5):146-149.
    [8]周跃飞,谢越,周立祥.酸性矿山废水天然中和形成的富铁沉淀及其环境属性[J].环境科学,2010,31(6):1581-1588.
    [9]陆建军,陆现彩,王睿勇,等.多金属矿山环境中矿物的微生物分解及环境效应研究进展[J].高校地质学报,2017,13(4):621-629.
    [10]DESA T,BROWN J,BURGOS W.Laboratory and fieldscale evaluation of low-pH Fe(II)oxidation at Hughes Borehole,Portage,Pennsylvania[J].Mine Water and the Environment,2010,29(4):239-247.
    [11]BROWN J F,JONES D S,MILLS D B,et al.Application of a depositional facies model to an acid mine drainage site[J].Applied and Environmental Microbiology,2011,77(2):545-554.
    [12]BURGOS W D,BORCH T,TROYER L D,et al.Schwertmannite and Fe oxides formed by biological low-pH Fe(II)oxidation versus abiotic neutralization:impact on trace metal sequestration[J].Geochimica et Cosmochimica Acta,2012,76:9-44.
    [13]JONES D S,KOHL C,GRETTENBERGER C,et al.Geochemical niches of iron-oxidizing acidophiles in acidic coal mine drainage[J].Applied and Environmental Microbiology,2015,81(4):1242-1250.
    [14]SHENG Y,BIBBY K,GRETTENBERGER C,et al.Geochemical and temporal influences on the enrichment of acidophilic iron-oxidizing bacterial communities[J].Applied and Environmental Microbiology,2016,82(12):3611-3621.
    [15]SHENG Y,KALEY B,BIBBY K,et al.Bioreactors for low-pH iron(II)oxidation remove considerable amounts of total iron[J].RSC Advances,2017,7:35962-35972.
    [16]LARSON L N,SNCHEZ-ESPAA J,KALEY B,et al.Thermodynamic controls on the kinetics of microbial lowpH Fe(II)oxidation[J].Environmental Science and Technology,2014,48:9246-9254.
    [17]MAZUELOS A,CARRANZA F,PALENCIA I,et al.High efficiency reactor for the biooxidation of ferrous iron[J].Hydrometallurgy,2000,58:269-275.
    [18]WOOD T A,MURRAY K R,BURGESS J G.Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised on sand for the purpose of treating acid mine-drainage[J].Applied Microbiology and Biotechnology,2001,56:560-565.
    [19]ROWE O F,JOHNSON D B.Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors[J].Systematic and Applied Microbiology,2008,31:68-77.
    [20]HEDRICH S,JOHNSON D B.Modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters[J].Bioresource Technology,2012,6:44-49.
    [21]PERETYAZHKO T,ZACHARA J M,BOILY J F,et al.Mineralogical transformations controlling acid mine drainage chemistry[J].Chemical Geology,2009,262:169-178.
    [22]SNCHEZ-ESPAA J,YUSTA I,DIEZ-ERCILLA M.Schwertmannite and hydrobasaluminite:a re-evaluation of their solubility and control on the iron and aluminium concentration in acidic pit lakes[J].Applied Geochemistry,2011,26(9/10):1752-1774.
    [23]JOHNSTON S G,KEENE A F,BURTON E D,et al.Iron and arsenic cycling in intertidal surface sediments during wetland remediation[J].Environmental Science and Technology,2011,45:2179-2185.
    [24]STOOKEY L L.Ferrozine:a new spectrophotometric reagent for iron[J].Analytical Chemistry,1970,42(7):779-781.
    [25]蒲清三,张祝豪,史硕,等.COD快速消解法测定地表水中的总氮[J].三峡生态环境监测,2017,1(2):58-63.
    [26]REGENSPURG S,BRAND A,PEIFFER S.Formation and stability of schwertmannite in acidic mining lakes[J].Geochimica et Cosmochimica Acta,2004,68(6):1185-1197.
    [27]HEINZEL E,HEDRICH S,JANNECK E,et al.Bacterial diversity in a mine water treatment plant[J].Applied and Environmental Microbiology,2009,75(3):858-861.
    [28]HEINZEL E,JANNECK E,GLOMBITZA F,et al.Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters[J].Environmental Science and Technology,2009,43:6138-6144.
    [29]HAO C B,ZHANG L N,WANG L H,et al.Microbial community composition in acid mine drainage lake of Xiang Mountain sulfide mine in Anhui Province,China[J].Geomicrobiology Journal,2012,29(10):886-895.
    [30]王丽华,郝春博,李思远,等.安徽某铁矿排土场废矿石中细菌群落分子生态学研究[J].地学前缘,2014,21(4):199-209.
    [31]刘莹,王丽华,郝春博,等.酸性矿山废水库周边土壤微生物多样性及氨氧化菌群落研究[J].环境科学,2014,35(6):2305-2313.
    [32]谢越,周立祥.酸性环境下生物成因施氏矿物稳定性研究[J].地学前缘,2011,18(5):310-318.
    [33]YU J Y,HEO B,CHOI I K,et al.Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage[J].Geochimica et Cosmochimica Acta,1999,63:3407-3416.
    [34]ALPERS C N,NORDSTROM D K,BALL J W.Solubility of jarosite solid solutions precipitated from acid mine waters,Iron Mountain,California,USA[J].Science Geological Bulletin,1989,42(4):281-298.
    [35]周立祥.酸性矿山废水中生物成因次生高铁矿物的形成及环境工程意义[J].地学前缘,2008,15(6):74-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700