用户名: 密码: 验证码:
Ti60合金板材的室温强度与其显微组织和织构的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Microstructure and Texture on Room Temperature Strength of Ti60 Ti-Alloy Plate
  • 作者:李文渊 ; 刘建荣 ; 陈志勇 ; 赵子博 ; 王清江
  • 英文作者:LI Wenyuan;LIU Jianrong;CHEN Zhiyong;ZHAO Zibo;WANG Qingjiang;Institute of Metal Research, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:金属材料 ; Ti60钛合金板材 ; 热处理 ; 显微组织 ; 织构 ; 温强 ; 各向异性
  • 英文关键词:metallic materials;;Ti60 Ti-alloy plate;;heat treatment;;microstructure;;texture;;room temperature strength;;anisotropy
  • 中文刊名:CYJB
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:中国科学院金属研究所;中国科学院大学;
  • 出版日期:2018-06-25
  • 出版单位:材料研究学报
  • 年:2018
  • 期:v.32
  • 语种:中文;
  • 页:CYJB201806008
  • 页数:9
  • CN:06
  • ISSN:21-1328/TG
  • 分类号:57-65
摘要
研究了Ti60合金板材的组织、织构随热处理温度的变化规律及其对室温强度的影响。结果表明:对于Ti60合金板材,与轧制态相比,在α单相区热处理后显微组织和织构基本不变;随着热处理温度由α+β两相区升高到β单相区,等轴初生α相体积分数减少直至完全转变为片层次生α相,T型织构成分逐渐消失,并形成新的织构。在热处理温度下初生α相的体积分数,是决定是否形成新织构的主要因素:初生α相大量存在时次生α相的取向与之相近;初生α相体积分数减少对次生α相取向的影响减弱,次生α相的{0001}晶面易形成新的集中取向,与高温轧制变形后形成的β相织构有关。板材同一方向(TD或RD)的室温强度变化主要受晶内亚结构的影响:α单相区热处理后未消除晶内亚结构,板材的室温强度与轧态接近;α+β两相区和β单相区热处理消除了晶内亚结构,使强度明显降低。消除晶内亚结构后,板材相同方向的室温强度受显微组织的影响较小:初生α相体积分数的减少对室温强度没有明显的影响,在两相区不同温度热处理的板材其室温强度相当,β单相区热处理后板材的室温强度呈降低趋势,但是不同方向上的降低幅度受织构的影响较大。织构和晶内亚结构共同影响板材室温强度的各向异性,在晶体学c轴集中取向的方向上强度较高,晶内亚结构的存在弱化织构对拉伸强度各向异性的影响,在两相区和β单相区热处理消除了晶内亚结构,使板材的各向异性增强。
        The evolution of microstructure and texture at different temperatures and its effect on room temperature strength in Ti60 Ti-alloy plates were investigated in the present work. There was no perceivable change of the microstructure or texture after heat treatment at 700?C compared with those of the as-rolled plate. In α + β and β phase regions equiaxed primary α grains shrank and ultimately transformed to secondary α phase, and T-type texture was replaced by a new type of texture with temperature increasing. It was indicated that whether new texture formed or not was significantly affected by the percentage of primary α phase during α →β →α phase transformation: by high percentage, the primary αphase strongly induced the secondary α phase to be with the similar orientation, thereby nearly no change of the texture; by low or zero percentage, part of the formed secondary α phase with new orienta-tion, which was hardly affected by the primary α phase and was inferred as results of α variants selection dominated by texture of β grains formed during rolling at high temperature. Room temperature strength was mainly affected by the substructure: heat treatment in the α phase region didn't eliminate the substructure, the room temperature strength is comparable to that of the as-rolled plates; heat treatment in/above α + β phase field eliminated the substructure, resulting in large reduction of room temperature strength compared with the as-rolled plates. After eliminating the substructure, the room temperature strength was impacted by the microstructure: similar room temperature strength of plates heat treated in low and high α + β phase region is related to the limited effect of the percentage of equiaxed primary αphase on the strength; the room temperature strength decreased after heat treatment in β phase region,and the decrease amplitude in certain direction was remarkably affected by texture. The degree of room temperature anisotropy was influenced by the texture and substructure: higher strength exhibited along the crystallographic c axis; while the substructure weakened the influence of the texture on anisotropy, resulting in stronger anisotropy in plates heat treated in/above α+β phase region.
引文
[1]Boyer R R.An overview on the use of titanium in the aerospace industry[J].Mater.Sci.Eng.,1996,213A:103
    [2]Banerjee D,Williams J C.Perspectives on titanium science and technology[J].Acta Mater.,2013,61:844
    [3]Wang Q J,Liu J R,Yang R.High temperature titanium alloys:status and perspective[J].J.Aeronaut.Mater.,2014,34(4):1(王清江,刘建荣,杨锐.高温钛合金的现状与前景[J].航空材料学报,2014,34(4):1)
    [4]Jin H X,Wei K X,Li J M,et al.Research development of titanium alloy in aerospace industry[J].Chin.J.Nonfer.Metals,2015,25:280(金和喜,魏克湘,李建明等.航空用钛合金研究进展[J].中国有色金属学报,2015,25:280)
    [5]Li M Q,Lin Y Y.Grain refinement in near alpha Ti60 titanium alloy by the thermohydrogenation treatment[J].Int.J.Hydrogen Energy,2007,32:626
    [6]Jia W J,Zeng W D,Zhou Y G,et al.High-temperature deformation behavior of Ti60 titanium alloy[J].Mater.Sci.Eng.,2011,528A:4068
    [7]Sun F,Li J S,Kou H C,et al.βphase transformation kinetics in Ti60 alloy during continuous cooling[J].J.Alloy.Compd.,2013,576:108
    [8]Peng W W,Zeng W D,Wang Q J,et al.Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models[J].Mater.Des.,2013,51:195
    [9]Yang L N,Liu J R,Tan J,et al.Dwell and normal cyclic fatigue behaviours of Ti60 alloy[J].J.Mater.Sci.Technol.,2014,30:706
    [10]Jia W J,Zeng W D,Yu H Q.Effect of aging on the tensile properties and microstructures of a near-alpha titanium alloy[J].Mater.Des.,2014,58:108
    [11]Zhao Z B,Wang Q J,Liu J R,et al.Texture of Ti60 alloy precision bars and its effect on tensile properties[J].Acta Metall.Sin.,2015,51:561(赵子博,王清江,刘建荣等.Ti60合金棒材中的织构及其对拉伸性能的影响[J].金属学报,2015,51:561)
    [12]Zhao L,Liu J R,Wang Q J,et al.Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy[J].Chin.J.Mater.Res.,2009,23:1(赵亮,刘建荣,王清江等.析出相对Ti60钛合金蠕变和持久性能的影响[J].材料研究学报,2009,23:1)
    [13]Wang Y N,Huang J C.Texture analysis in hexagonal materials[J].Mater.Chem.Phys.,2003,81:11
    [14]Williams D N,Eppelsheimer D S.Origin of the deformation textures of titanium[J].Nature,1952,170:146
    [15]Dillamore I L,Roberts W T.Preferred orientation in wrought and annealed metals[J].Metall.Rev.,1965,10:271
    [16]Frederick S F,Lenning G A.Producing basal textured Ti-6Al-4V sheet[J].Metall.Trans.,1975,6B:601
    [17]Green J A S.Influence of texture on the corrosion and film formation of a titanium single crystal[J].Corrosion,1974,30:175
    [18]Anderson A J,Thompson R B,Cook C S.Ultrasonic measurement of the Kearns texture factors in zircaloy,zirconium,and titanium[J].Metall.Mater.Trans.,1999,30A:1981
    [19]Leyens C,Peters M.Titanium and Titanium Alloys[M].Weinheim:Wiley,2003
    [20]Bache M R,Evans W J.Impact of texture on mechanical properties in an advanced titanium alloy[J].Mater.Sci.Eng.,2001,319-321A:409
    [21]Bache M R,Evans W J,Suddell B,et al.The effects of texture in titanium alloys for engineering components under fatigue[J].Int.J.Fatigue,2001,23(Suppl.):153
    [22]Bowen A W.The influence of crystallographic orientation on the fracture toughness of strongly textured Ti-6Al-4V[J].Acta Metall.,1978,26:1423
    [23]Tchorzewski R M,Hutchinson W B.Effect of texture on fatigue crack path in titanium-6Al-4V[J].Met.Sci.,1978,12:109
    [24]Li W Y,Chen Z Y,Liu J R,et al.Effect of texture on anisotropy at600℃in a near-αtitanium alloy Ti60 plate[J].Mater.Sci.Eng.,2017,688A:322
    [25]Yang L N.Dwell fatigue behavior and damage mechanism of Ti60alloy[D].Beijing:University of Chinese Academy of Sciences,2013(杨丽娜.Ti60合金保载疲劳行为及损伤机制研究[D].北京:中国科学院大学,2013)
    [26]Cayron C.Importance of theα→βtransformation in the variant selection mechanisms of thermomechanically processed titanium alloys[J].Scr.Mater.,2008,59:570
    [27]Zhao Z B,Wang Q J,Hu Q M,et al.Effect ofβ(110)texture intensity onα-variant selection and microstructure morphology duringβ→αphase transformation in nearαtitanium alloy[J].Acta Mater.,2007,126:372
    [28]Lee E,Banerjee R,Kar S,et al.Selection ofαvariants during microstructural evolution inα/βtitanium alloys[J].Philos.Mag.,2007,87:3615
    [29]Zong Y Y,Xue K M,Shan D B,et al.Effect of heat treatment on the microstructure and mechanical properties of BT14 titanium alloy[J].Mater.Sci.Technol.,2004,12:546(宗影影,薛克敏,单德彬等.热处理对BT14钛合金显微组织和力学性能的影响[J].材料科学与工艺,2004,12:546)
    [30]Chen X W,Zhang S H,Wang Z T,et al.Effects of heat treatment conditions on microstructure and mechanical properties of TC11 titanium alloy[J].Heat Treat.Met.,2007,32(10):48(陈学伟,张士宏,王忠堂等.热处理工艺对TC11钛合金组织及性能的影响[J].金属热处理,2007,32(10):48)
    [31]Wang Z H,Xia C Q,Peng X M,et al.Effect of heat treatment on microstructure and mechanical properties of Ti62421s high temperature titanium alloy[J].Chin.J.Nonfer.Met.,2010,20:2298(王志辉,夏长清,彭小敏等.热处理工艺对Ti62421s高温钛合金组织与力学性能的影响[J].中国有色金属学报,2010,20:2298)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700