用户名: 密码: 验证码:
传统光谱变换与连续小波耦合定量反演潮土有机质含量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative Inversion of Organic Matter Content Based on Interconnection Traditional Spectral Transform and Continuous Wavelet Transform
  • 作者:王延仓 ; 金永涛 ; 王晓宁 ; 廖钦洪 ; 顾晓鹤 ; 赵子辉 ; 杨秀峰
  • 英文作者:WANG Yan-cang;JIN Yong-tao;WANG Xiao-ning;LIAO Qin-hong;GU Xiao-he;ZHAO Zi-hui;YANG Xiu-feng;Institute of Computer and Remote Sensing Information Technology,North China Institute of Aerospace Engineering;Aerospace Remote Sensing Information Processing and Application Collaborative Innovation Center of Hebei Province;College of Life Science and Forestry,Chongqing University of Arts and Sciences;Beijing Research Center for Information Technology in Agriculture;National Engineering Research Center for Information Technology in Agriculture;
  • 关键词:土壤有机质 ; 传统光谱变换 ; 连续小波变换 ; 潮土
  • 英文关键词:Soil organic matter;;Spectral transform;;Continuous wavelet transforms;;Alluvial soil
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:北华航天工业学院;河北省航天遥感信息处理与应用协同创新中心;重庆文理学院林学与生命科学学院;北京农业信息技术研究中心;国家农业信息化工程技术研究中心;
  • 出版日期:2018-08-15
  • 出版单位:光谱学与光谱分析
  • 年:2018
  • 期:v.38
  • 基金:河北省青年基金项目(D2017409021);; 国家重点研发计划(2016YFD0300609);; 北京市农林科学院科技创新能力建设专项(KJCX20170705);; 国家自然科学基金项目(41401419)资助
  • 语种:中文;
  • 页:GUAN201808048
  • 页数:7
  • CN:08
  • ISSN:11-2200/O4
  • 分类号:253-259
摘要
以北京地区的96个潮土土样的有机质含量为研究对象,以传统光谱变换为参照,研究分析传统光谱变换与连续小波的耦合在估测土壤有机质含量的可行性;首先采用传统光谱变换与连续小波处理土壤光谱数据,然后将处理后的光谱数据与土壤有机质含量进行相关性分析,提取敏感波段,并采用偏最小二乘法构建土壤有机质含量估测模型。结果表明:耦合传统光谱变换技术与连续小波技术可大幅提升光谱对有机质含量的敏感性,其相关系数R~2最高可达0.714,这表明耦合传统光谱变换技术与连续小波技术可深入挖掘光谱内的有益信息;与传统光谱变换技术相比,基于耦合传统光谱变换技术与连续小波技术构建的模型精度更高,稳定性更好,其中以微分变换构建的模型最优,其R~2=0.772,RMSE=0.223,这表明耦合传统光谱变换技术与连续小波技术可有效压制噪声的负面影响,提升光谱的稳定性。
        In this study,the soil organic matter content of 96 alluvial soil collected from Beijing area was taken as the object of study;Compared with the traditional spectral transform technology,this paper studied on the analysis of the traditional spectral transform and continuous wavelet technology coupling in the feasibility of estimating soil organic matter content.Firstly,the traditional spectral transform technique and the continuous wavelet transform were used to deal with the soil spectral data.Then The correlation between the spectral data and the soil organic matter content was analyzed,and the sensitive bands were extracted.Finally the estimation model of soil organic matter content was constructed by partial least square method.The results showed that the coupling of traditional spectral transform and continuous wavelet technology can greatly improve the spectral sensitivity of organic matter content,and the correlation coefficient(R~2)was up to 0.714,which indicate that the coupling of the traditional spectral transform and continuous wavelet technology can dig the useful signal of the spectral information;Compared with the traditional spectral transform technology,the accuracy of the model based on the interconnection of traditional technique and continuous wavelet transform was higher and better stability;Among of the model based on the interconnection of traditional technique and continuous wavelet transform,the model construct by the differential transform was the Optimal model;Its coefficient of decision and root mean square error were 0.774 and 0.223 respectively,which indicated that the interconnection of traditional technique and continuous wavelet transform spectral technique can effectively suppress noise,improving the spectral stability.
引文
[1]ZHAO Chun-jiang(赵春江).Agriculture Network Information(农业网络信息),2010,(4):5.
    [2]XU Xin,ZHANG Hao,XI Lei,et al(许鑫,张浩,席磊,等).Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2011,27(S2):94.
    [3]CHEN Gui-fen,MA Li,CHEN Hang(陈桂芬,马丽,陈航).Journal of Jilin Agricultural University(吉林农业大学学报),2013,35(3):253.
    [4]MENG Ji-hua,WU Bing-fang,DU Xin,et al(蒙继华,吴炳方,杜鑫,等).Remote Sensing for Land&Resources(国土资源遥感),2011,90(3):1.
    [5]YANG Bang-jie,PEI Zhi-yuan,ZHOU Qing-bo,et al(杨邦杰,裴志远,周清波,等).Transactions of the Chinese Society of Agricultural Engineering(农业工程学报).2002,18(3):191.
    [6]YANG Jian-feng,MA Jun-cheng,WANG Ling-chao(杨建锋,马军成,王令超).Geospatial Information(地理空间信息),2015,13(2):47.
    [7]Masserschmidt I,Cuelbas C J,Poppi R J,et al.Journal of Chemometrics,1999,13:265.
    [8]WU Jie,LI Yu-huan,LI Zeng-bing,et al(武婕,李玉环,李增兵,等).Acta Ecologica Sinica(生态学报),2014,34(6):1596.
    [9]Moslem Ladoni,Hosein Ali Bahrami,Sayed Kazem Alavipanah,et al.Precision Agric.,2010,11:82.
    [10]Krishnan P,Alexander J D,Butler B J,et al.Soil Science Society of America Journal,1980,44:1282.
    [11]Alicia Palacios-Orueta,Jorge E Pinzon,Susan L Ustin,et al.Remote Sensing of Environment,1998,68:138.
    [12]Liu H J,Zhang Y Z,Zhang B,et al.Environmental Monitoring and Assessment,2009,154:147.
    [13]JI Wen-jun,SHI Zhou,ZHOU Qing,et al(纪文君,史舟,周清,等).Journal of Infrared and Millimeter Waves(红外与毫米波学报),2012,31(3):277.
    [14]HE Ting,WANG Jing,et al(何挺,王静,等).Geomatics and Information Science of Wuhan University(武汉大学学报·信息科学版),2006,31(11):975.
    [15]Viscarra Rossela R A,Chappella A,de Caritatb P,et al.European Journal of Soil Science,2011,62:442.
    [16]LIAO Qin-hong,GU Xiao-he,LI Cun-jun,et al(廖钦洪,顾晓鹤,李存军,等).Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2012,28(23):132.
    [17]XU Yong-ming,LIN Qi-zhong,et al(徐永明,蔺启忠,等).Acta Pedologica Sinica(土壤学报),2006,43(5):709.
    [18]ZHAO Ze-hai,ZU Yuan-gang,CONG Pei-tong(赵则海,祖元刚,丛沛桐).Acta Ecologica Sinica(生态学报),2002,22(10):1660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700