用户名: 密码: 验证码:
珠江三角洲对流层HCHO柱浓度遥感监测及影响因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Remote sensing monitoring of tropospheric HCHO column concentration and influential factors over pearl river delta, China
  • 作者:咸龙 ; 葛建团 ; 徐敏 ; 陈雪萍 ; 王爽 ; 谢顺涛 ; 胡文文
  • 英文作者:XIAN Long;GE Jian-tuan;XU Min;CHEN Xue-ping;WANG Shuang;XIE Shun-tao;HU Wen-wen;College of Geography and Environmental Science, Northwest Normal University;Jiayuguan City Government;College of Environmental and Municipal Engineering, Lanzhou Jiaotong University;Heshui County Environmental Protection Agency;
  • 关键词:OMI ; 甲醛柱浓度 ; 时空分布 ; 影响因素 ; 珠江三角洲 ; 相关分析
  • 英文关键词:OMI;;HCHO column concentrationa;;temporal and spatial distribution;;influencing factors;;Pearl River Delta;;correlation analysis
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:西北师范大学地理与环境科学学院;嘉峪关市政府;兰州交通大学环境与市政工程学院;合水县环境保护局;
  • 出版日期:2018-09-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家重点研发计划项目(2016YFC0500907);; 甘肃省重点研发计划项目(17YF1FA120)
  • 语种:中文;
  • 页:ZGHJ201809003
  • 页数:11
  • CN:09
  • ISSN:11-2201/X
  • 分类号:23-33
摘要
基于OMI卫星遥感反演数据,对珠江三角洲地区2009年~2016年对流层甲醛柱浓度时空分布特征及其影响因素进行研究.结果表明,珠江三角洲甲醛柱浓度时间变化特征为:8年来呈波动变化趋势,年均值为13.11×10~(15)molec/cm~2,最低值出现于2012年,最高值出现于2016年;最大降低率为5.8%,最大增长率为6.3%.每年夏季最高,冬季最低,大小依次为夏季>秋季>春季>冬季,8a来96个月甲醛月际变化幅度较大,呈单峰结构,其中每年6月最高;空间变化特征为:甲醛柱浓度值由西北往东南递减,其中以肇庆东北大部、佛山北部和广州西部组成高值区分布中心,以佛山中南部、广州东南半部和江门西北半部组成三级次高级分布区,以惠州、东莞、深圳、中山、珠海和江门等珠江三角洲近海岸地区为一二级低值浓度区;影响因素中气温与气压等气象因素对HCHO的生成和分布有着促进作用,植被对HCHO的产生有一定的贡献,甲醛柱浓度的变化与汽车保有量、地区生产总值等经济发展要素呈现正相关关系,能源消耗总量与工业废气排放总量的增加与甲醛柱浓度增长密切相关,人为因素是甲醛柱浓度变化的主要原因.
        Satellite remote Sensing data Retrieval based on OMI, the temporal and spatial distribution characteristics of formaldehyde column concentration in the troposphere and its influencing factors in the Pearl River Delta region from 2009 to 2016 were studied. The results show that the concentration change of formaldehyde column in the Pearl River Delta was characterized by fluctuations in the past 8 years, with an average annual value of 13.11×10~(15) molec/cm~2, the lowest value appeared in 2012 and the highest value appeared in 2016, the maximum reduction rate was 5.8%, the maximum growth rate was 6.3%. The highest in summer and the lowest in winter, the order was summer>autumn>spring>winter, and the monthly variation of formaldehyde in 8 a to 96 months was larger, showing a single peak structure, with the highest in June every year; The spatial variation was characterized by: The concentration of formaldehyde column decreases from northwest to southeast. Among them, the distribution center of the northeastern part of Zhaoqing, the northern part of Foshan and the western part of Guangzhou constitutes the distribution center of high value area. It consists of the third-level sub-level distribution area in the south-central part of Foshan, the southeastern part of Guangzhou and the northwest half of Jiangmen. In Huizhou, Dongguan, Shenzhen, Zhongshan, Zhuhai and Jiangmen, the coastal areas of the Pearl River Delta are the first-level low-value concentration areas. Meteorological factors such as temperature and pressure affect the formation and distribution of HCHO, and vegetation has a certain contribution to the production of HCHO. There is a positive correlation between the change of formaldehyde column concentration and the factors of economic development, such as automobile ownership, regional GDP, etc, the increase of total energy consumption and total industrial waste gas emission was closely related to the increase of formaldehyde column concentration, and the main reason for the change of formaldehyde column concentration was human factors.
引文
[1]王琨,李玉华,赵庆良,等.室内空气中的甲醛检测分析及其预测模型[J].中国环境科学,2004,24(6):19-22.
    [2]Li Z,Schwier A N,Sareen N,et al.Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics:surface tension depression and secondary organic products[J].Atmospheric Chemistry&Physics Discussions,2011,11(7):19477-19506.
    [3]Liu L,Andreani-Aksoyoglu S,Keller J,et al.A photochemical modeling study of ozone and formaldehyde generation and budget in the Po basin[J].Journal of Geophysical Research Atmospheres,2007,112(D22):1-16.
    [4]Zhu L,Jacob D J,Mickley L J,et al.Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite(OMI)measurements of HCHOcolumns[C]//AGU Fall Meeting.AGU Fall Meeting Abstracts,2014:114004.
    [5]Millet D B,Jacob D J,Boersma K F,et al.Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor[J].Journal of Geophysical Research Atmospheres,2008,113(D2):
    [6]林旭,朱彬,安俊琳,等.南京北郊VOCs对臭氧和二次有机气溶胶潜在贡献的研究[J].中国环境科学,2015,35(4):976-986.
    [7]钟禾.甲醛被列为一类致癌物质[J].福建质量管理,2005,(2):44-45.
    [8]张莹,邵毅,王式功,等.北京市空气污染物对呼吸系统疾病门诊人数的影响[J].中国环境科学,2014,34(9):2401-2407.
    [9]Nicholas L Boeke,Julian D Marshall,Sergio Alvarez,et al.Formaldehyde columns from the Ozone Monitoring Instrument:Urban versus background levels and evaluation using aircraft data and a global model[J].Journal of Geophysical Research:Atmospheres,2011,116(D5):D05303.
    [10]Stavrakou T,Müller J F,Smedt I D,et al.Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns[J].Atmospheric Chemistry&Physics Discussions,2009,9(3):1037-1060.
    [11]Bryan N Duncan,Yasuko Yoshida,Jennifer R Olson,et al.Application of OMI observations to a space-based indicator of NOx,and VOCcontrols on surface ozone formation[J].Atmospheric Environment,2010,44(18):2213-2223.
    [12]彭伟,王瑛,高先池,等.华北农村夏季大气甲醛浓度变化特征[J].环境科学研究,2016,29(8):1119-1127.
    [13]Luecken D J,Hutzell W T,Strum M L,et al.Regional sources of atmospheric formaldehyde and acetaldehyde,and implications for atmospheric modeling[J].Atmospheric Environment,2012,47(2):477-490.
    [14]Kaiser J,Wolfe G M,Bohn B,et al.Evidence for an unidentified ground-level source of formaldehyde in the Po Valley with potential implications for ozone production[J].Atmospheric Chemistry and Physics,2014,15(3):1289-1298.
    [15]张玉洁,庞小兵,牟玉静.北京市植物排放的异戊二烯对大气中甲醛的贡献[J].环境科学,2009,30(4):976-981.
    [16]Guven B B,Olaguer E P.Ambient formaldehyde source attribution in Houston during Tex AQS II and TRAMP[J].Atmospheric Environment,2011,45(25):4272-4280.
    [17]Largiuni O,Giacomelli M C,Piccardi G.Concentration of Peroxides and Formaldehyde in Air and Rain and Gas-Rain Partitioning[J].Journal of Atmospheric Chemistry,2002,41(1):1-20.
    [18]Zhu L,Mickley L J,Jacob D J,et al.Variability of HCHO over the Southeastern United States observed from space:Implications for VOC emissions[C]//AGU Fall Meeting.AGU Fall Meeting Abstracts,2012.
    [19]Marais E A,Jacob D J,Kurosu T P,et al.Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns[J].Atmospheric Chemistry&Physics Discussions,2012,12(3):7475-7520.
    [20]Bauwens M,Stavrakou T,Müller J F,et al.Nine years of global hydrocarbon emissions based on source inversion of OMIformaldehyde observations[J].Atmospheric Chemistry&Physics,2016,16(15):1-45.
    [21]张彦军,牛铮,王力,等.基于OMI卫星数据的城市对流层NO2变化趋势研究[J].地理与地理信息科学,2008,(3):96-99.
    [22]吴炳方,张淼.从遥感观测数据到数据产品[J].地理学报,2017,72(11):2093-2111.
    [23]刘显通,郑腾飞,万齐林,等.OMI遥感珠江三角洲城市群NO2的时空分布特征及人类活动影响分析[J].热带气象学报,2015,31(2):193-201.
    [24]陈皓,王雪松,沈劲,等.珠江三角洲秋季典型光化学污染过程中的臭氧来源分析[J].北京大学学报(自然科学版),2015,51(4):620-630.
    [25]杨柳林,曾武涛,张永波,等.珠江三角洲大气排放源清单与时空分配模型建立[J].中国环境科学,2015,35(12):3521-3534.
    [26]竺可桢.中国近五千年来气候变迁的初步研究[J].中国科学,1973,(2):168-189.
    [27]Chance K,Palmer P I,Spurr R J D,et al.Satellite observations of formaldehyde over North America from GOME[J].Geophysical Research Letters,2000,27(21):3461-3464.
    [28]Callies J,Corpaccioli E,Eisinger M,et al.GOME-2-Metop's second-generation sensor for operational ozone monitoring[J].ESAbulletin,2000,102:28-36.
    [29]Bovensmann H,Burrows J P,Buchwitz M,et al.SCIAMACHY:Mission Objectives and Measurement Modes[J].Journal of Atmospheric Sciences,1997,56(2):125-150.
    [30]Levelt P F,Oord G H J V D,Dobber M R,et al.The ozone monitoring instrument[J].IEEE Transactions on Geoscience&Remote Sensing,2006,44(5):1093-1101.
    [31]Baek K H,Kim J H,Park R J.Validation of OMI HCHO data and its analysis over Asia[J].Science of the Total Environment,2014,490:93-105.
    [32]Millet D B,Jacob D J,Turquety S,et al.Formaldehyde distribution over North America:Implications for satellite retrievals of formaldehyde columns and isoprene emission[J].Journal of Geophysical Research Atmospheres,2006,111(D24):4057-4065.
    [33]叶勤玉,高阳华,杨世琦,等.基于MODIS数据的重庆市植被覆盖度时空变化分析[J].高原山地气象研究,2016,36(2):53-58.
    [34]王宇航,赵鸣飞,康慕谊,等.黄土高原地区NDVI与气候因子空间尺度依存性及非平稳性研究[J].地理研究,2016,35(3):493-503.
    [35]陈艳英,游扬声,唐云辉,等.重庆市植被指数与高度/坡度的关系研究[J].西南师范大学学报(自然科学版),2016,41(11):122-129.
    [36]穆少杰,李建龙,陈奕兆,等.2001~2010年内蒙古植被覆盖度时空变化特征[J].地理学报,2012,67(9):1255-1268.
    [37]谢顺涛,巨天珍,张惠娥.基于OMI数据的兰州地区对流层甲醛时空变化研究[J].环境科学学报,2017,37(11):4253-4261.
    [38]陈月霞,曹琳,杨淑萍.气温对大气主要污染物的影响[J].现代农业科技,2011,(10):277-278.
    [39]何启超,蔡旭晖,宋宇,等.珠江三角洲区域大气扩散和输送特征诊断分析[J].北京大学学报(自然科学版),2013,49(6):945-954.
    [40]张兴赢,张鹏,张艳,等.近10a中国对流层NO2的变化趋势、时空分布特征及其来源解析[J].中国科学(D辑:地球科学),2007,(10):1409-1416.
    [41]李兵.基于卫星遥感数据的甘肃省对流层NO2时空分布特征研究[D].兰州:西北师范大学,2016.
    [42]吴丹,吴仁海.不同地区经济增长与环境污染关系的VAR模型分析--基于广州、佛山、肇庆经济圈的实证研究[J].环境科学学报,2011,31(4):880-888.
    [43]王少丽,王会祥,刘斌.北京市大气甲醛浓度研究[J].环境科学研究,2008,(3):27-30.
    [44]黄俊,廖碧婷,吴兑,等.广州近地面臭氧浓度特征及气象影响分析[J].环境科学学报,1-17[2017-12-28].https://doi.org/10.13671/j.hjkxxb.2017.0256.
    [45]Guether A B,Monson R K,Flynt M S.2,4Dinitrophenylhydrazones emissions from deciduous trees[J].Atmospheric Environment,2000,34:3027-3032.
    [46]田贺忠,郝吉明,陆永琪,等.中国氮氧化物排放清单及分布特征[J].中国环境科学,2001,21(6):14-18.
    [47]曹旭.甲醛气体的危害及污染治理[J].环境保护与循环经济,2014,34(9):48-50+63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700