用户名: 密码: 验证码:
基于模糊聚类循环迭代模型的陕西省农业干旱风险评估与区划
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Assessment and zoning of agriculture drought risk based on fuzzy clustering iterative model in Shaanxi
  • 作者:吴迪 ; 张海涛 ; 何斌 ; 王全九 ; 周蓓蓓
  • 英文作者:WU Di;ZHANG Hai-tao;HE Bin;WANG Quan-jiu;ZHOU Bei-bei;China Irrigation and Drainage Development Center;Development Research Centre of Ministry of Water Resources China;Institute of Water Resources and Hydro-electric Engineering,State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area,Xi'an University of Technology;
  • 关键词:农业干旱 ; 风险区划 ; 地理信息系统 ; 模糊聚类循环迭代模型 ; 陕西省
  • 英文关键词:agricultural drought;;risk zoning;;geographical information system(GIS);;fuzzy clustering iterative model;;Shaanxi Province
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:中国灌溉排水发展中心;水利部发展研究中心;西安理工大学水利水电学院/西北旱区生态水利工程国家重点实验室培育基地;
  • 出版日期:2018-09-10
  • 出版单位:干旱地区农业研究
  • 年:2018
  • 期:v.36;No.170
  • 基金:国家重点研发计划课题(2017YFC0405805-03);; 陕西省水利科技计划项目“陕西省农业干旱风险评估与区划研究”(2014slkj-1010)
  • 语种:中文;
  • 页:GHDQ201805034
  • 页数:12
  • CN:05
  • ISSN:61-1088/S
  • 分类号:236-247
摘要
为了加强陕西省农业干旱风险评估和应急管理能力,以10个地级市为研究对象,选择表征农业干旱风险的危害性、暴露性、脆弱性和抗旱能力等方面的17个代表性指标,建立了具有区域适用性的农业干旱风险评价指标体系;基于模糊聚类循环迭代方法构建了农业干旱风险评估模型,并结合GIS技术,对陕西省农业干旱风险进行评估和区划研究。结果表明:全省农业干旱风险具有明显的区域差异性和规律性,极严重-严重干旱风险区主要分布在榆林、渭南、商洛地区;中度干旱风险区主要分布在延安、宝鸡和咸阳地区;一般-轻度干旱风险区主要分布在铜川、安康、西安和汉中地区,农业干旱风险总体呈北部地区大于南部地区,关中东部地区高于西部地区的特点。依据研究结果,为管理部门决策制定提出了不同风险区抗旱减灾措施建议。
        Agricultural drought risk of 10 cities were investigated to strengthen agricultural drought risk assessment and emergency management capacity in Shaanxi by a fuzzy clustering iterative model. The assessing system was constructed by selected 17 representative indexes( including hazard,exposure,vulnerability and resilience) of agricultural drought risk. Further more,GIS technology was used in agricultural drought risk zoning. The results showed that difference and regularity was obvious among the spatial distribution of agricultural drought risk in different regions. The regions exhibiting high to very high risk,were mainly distributed throughout Yulin in Northern Shaanxi,Weinan and Shangluo. The regions exhibiting moderate risk were mainly distributed throughout Yanan,Baoji and Xianyang. The regions exhibiting slight to low risk were mainly distributed in Tongchuan,Ankang,Xi'an and Hangzhong. Agricultural drought risk in northern Shaanxi was relatively stronger than that in the Southern,while drought risk in the eastern Guanzhong was higher than in the western. Finally,adaptive measures and suggestions were proposed according to the respective characteristics of drought risk regions. The findings could provide a reference for administrative department to make a decision on drought mitigation.
引文
[1] IPCC. Climate Change 2007:The Physical Science Basis. Contribution of WGⅠto the IPCC AR4[C]∥Solomon S,Qin D,Manning M,et al. Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press,2007
    [2]全国抗旱规划编制工作组.全国抗旱规划[R],2010.
    [3] IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation[C]∥Field C B,V Barros,T F Stocker,et al. A Special Report of Working GroupsⅠandⅡof the Intergovernmental Panel on Climate Change. Cambridge,UK,and New York,NY,USA:Cambridge University Press,2012.
    [4] Maskrey A. Disaster Mitigation:A Community Based Approach[M].Oxford:Oxfam,1989.
    [5] Smith K. Environmental Hazards:Assessing Risk and Reducing Disaster[M].New York:Routledge,1996.
    [6] Okada N,Tatano H,HagiharaY,et al. Integrated research on methodological development of urban diagnosis for disaster risk and its applications[J]. Disaster Prevention Research Institute Annuals,Kyoto University,2004,47(C):1-8.
    [7]史培军.三论灾害研究的理论与实践[J].自然灾害学报,2002,11(3):1-9.
    [8]陈香.福建省台风灾害风险评估与区划[J].生态学杂志,2007,26(6):961-966.
    [9]张继权,李宁.主要气象灾害风险评估与管理的数量化方法及其应用[M].北京:北京师范大学出版社,2007.
    [10]秦越,徐翔宇,许凯,等.农业干旱灾害风险模糊评价体系及其应用[J].农业工程学报,2013,29(10):83-91.
    [11]何斌,王全九,吴迪,等.基于主成分分析和层次分析法相结合的陕西省农业干旱风险评估[J].干旱地区农业研究,2017,35(1):219-227.
    [12]李莉,匡昭敏,莫建飞,等.基于AHP和GIS的广西秋旱灾害风险等级评估[J].农业工程学报,2013,29(19):193-201.
    [13]张丹.区域旱情中长期预报及农业干旱风险综合评价[D].大连:大连理工大学,2011.
    [14]孙仲益,张继权,王春乙,等.基于网格GIS的安徽省旱涝组合风险区划[J].灾害学,2013,28(1):74-87.
    [15]陈家金,王加义,林晶.基于信息扩散理论的东南沿海三省农业干旱风险评估[J].干旱地区农业研究,2010,28(6):248-252.
    [16]韩宇平,阮本清,周杰.马尔柯夫链模型在区域干旱风险研究中的应用[J].内蒙古师范大学学报(自然科学版),2003,32(1):65-70.
    [17]翟大明.陕西省抗旱规划实施方案编制的主要做法[J].中国水利,2013,16:16-18.
    [18]国家防汛抗旱总指挥部,中华人民共和国水利部.中国水旱灾害公报[M].北京:中国水利水电出版社,2015.
    [19]徐新创,葛全胜,郑景云,等.农业干旱风险评估研究综述[J].干旱地区农业研究,2010,28(6):263-270.
    [20]刘彦平,蔡焕杰.三种干旱指标在泾惠渠灌区的适用性分析[J].干旱地区农业研究,2014,32(4):236-241.
    [21]乔丽,杜继稳,薛春芳,等.干旱指标在陕西省适用性研究[J].干旱地区农业研究,2010,28(2):1-6.
    [22]王春林,陈慧华,唐力生,等.基于前期降水指数的气象干旱指标及其应用[J].气象变化研究进展,2012,8(3):157-163.
    [23]袁文平,周广胜.干旱指标的理论分析与研究展望[J].地球科学进展,2004,19(6):982-988.
    [24]黄晚华,杨晓光,曲辉辉,等.基于作物水分亏缺指数的春玉米季节性干旱时空特征分析[J].农业工程学报,2009,25(8):28-34.
    [25]杜军,张勇,索朗欧珠.西藏冬小麦需水关键期的降水变化趋势分析[J].中国农业气象,2004,25(2):47-50.
    [26]张艳红,吕厚荃,李森.作物水分亏缺指数在农业干旱监测中的适用性[J].气象科技,2008,36(5):596-600.
    [27]陕西省水利水土保持厅,西北农业大学.陕西省作物需水量及分区灌溉模式[M].北京:水利电力出版社,1992.
    [28]王亚平,黄耀,张稳.中国东北三省1960-2005年地表干燥度变化趋势[J].地球科学进展,2008,23(6):619-627.
    [29]彭维英,殷淑燕,鲍小娟.陕西渭北旱塬气候暖干化及干旱灾害趋势判断[J].农业现代化研究,2012,33(1):121-124.
    [30]王富强,王雷.基于降水距平百分率的河南省干旱特征分析[J].中国农村水利水电,2014,(12):84-88.
    [31]万红莲.试论陕西水土流失问题[J].陕西农业科学,2008,(6):65-67.
    [32]陕西省人民政府办公厅.陕西省实行最严格水资源管理制度考核办法[Z].2013-09-23.
    [33]陈守煜.复杂水资源系统优化模糊识别理论与应用[M].吉林:吉林大学出版社,2002.
    [34]张允,赵景波.近200年来关中地区干旱灾害时空变化研究[J].干旱区资源与环境,2008,22(7):94-98.
    [35]李俊霖,延军平,孙虎,等.关中平原东、中、西部气候干旱化程度比较分析[J].干旱区资源与环境,2005,19(1):131-134.
    [36]陕西省抗旱规划[R].西安:陕西省水利厅,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700