用户名: 密码: 验证码:
螺线管传输并聚焦高能质子束的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Particle-In-Cell Simulation of High Energy Proton Beam Transported and Focused by Solenoid
  • 作者:张忠亚 ; 沈百飞
  • 英文作者:Zhang Zhongya;Shen Baifei;State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Physical Science and Technology,Shanghai Tech University;
  • 关键词:原子与分子物理学 ; 强场激光物理 ; 螺线管 ; PIC数值模拟 ; 质子束 ; 离子光学
  • 英文关键词:atomic and molecular physics;;high field laser physics;;solenoid;;PIC numerical simulation;;proton beam;;ion optics
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室;中国科学院大学;上海科技大学物质科学与技术学院;
  • 出版日期:2018-04-27 15:10
  • 出版单位:中国激光
  • 年:2018
  • 期:v.45;No.501
  • 基金:中国科学院先导B类专项(XDB16)
  • 语种:中文;
  • 页:JJZZ201809034
  • 页数:7
  • CN:09
  • ISSN:31-1339/TN
  • 分类号:282-288
摘要
采用3Dparticle-in-cell(PIC)数值模拟方法,研究高品质高能质子束经由脉冲电流螺线管传输并聚焦于远端的情况。模拟结果表明:初始时刻中心能量为250MeV,能散度为10%,空间发散角小于15mrad的质子束,通过长度为760mm、中心磁感应强度为10.87T的通电螺线管,可以被聚焦于距离质子源约2.5m的远端,焦斑横截面直径约为1.2mm,小于模拟初始时刻的1.8mm,质子数目的损失小于3%。研究结果表明利用通电螺线管来传输和调控高能质子束流的方案是可行的。该方案可用于优化质子束流品质,促进激光驱动质子加速在癌症治疗等对质子束单能性和发散角要求较高的领域得到早日应用。
        Based on 3 Dparticle-in-cell(PIC)numerical simulation method,the high quality,high energy proton beam is transmitted and focused on the far end via a pulse current solenoid.Simulation results show that proton beam with peak energy of 250 MeV,energy spread of 10% and a spatial divergence angle less than 15 mrad can be focused on a spot 2.5 maway from the proton source,after transported in a 760-mm pulse power solenoid under magnetic field strength of 10.87 T.The focal spot cross section diameter is 1.2 mm,less than the initial proton beam spot size;meanwhile,the number loss of proton beam is less than 3%.We conclude that it is feasible to use a powered solenoid to transmit and regulate a high energy proton beam.This scheme can be used to optimize the proton beam quality and promote the laser-driven proton acceleration to be applied early in the fields such as cancer treatment,where high proton beam unipotency and small divergence angle are required.
引文
[1]Henig A,Kiefer D,Markey K,et al.Enhanced laser-driven ion acceleration in the relativistic transparency regime[J].Physical Review Letters,2009,103(4):045002.
    [2]Huang Y S,Wang N Y,Tang X,et al.Ultrarelativistic ion acceleration in the laser-plasma interactions[J].Physics of Plasmas,2012,19(9):093109.
    [3]Bulanov S V,Esirkepov T Z,Khoroshkov V S,et al.Oncological hadrontherapy with laser ion accelerators[J].Physics Letters A,2002,299(2/3):240-247.
    [4]Bulanov S V,Khoroshkov V S.Feasibility of using laser ion accelerators in proton therapy[J].Plasma Physics Reports,2002,28(5):453-456.
    [5]Borghesi M,Campbell D H,Schiavi A,et al.Electric field detection in laser-plasma interaction experiments via the proton imaging technique[J].Physics of Plasmas,2002,9(5):2214-2220.
    [6]Wagner F,Deppert O,Brabetz C,et al.Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2targets[J].Physical Review Letters,2016,116(20):205002.
    [7]Kar S,Kakolee K F,Qiao B,et al.Ion acceleration in multispecies targets driven by intense laser radiation pressure[J].Physical Review Letters,2012,109(18):185006.
    [8]Haberberger D,Tochitsky S,Fiuza F,et al.Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams[J].Nature Physics,2011,8(1):95-99.
    [9]Zhang H,Shen B F,Wang W P,et al.Collisionless shock acceleration of high-flux quasimonoenergetic proton beams driven by circularly polarized laser pulses[J].Physical Review Letters,2017,119(16):164801.
    [10]Schwoerer H,Pfotenhauer S,Jckel O,et al.Laserplasma acceleration of quasi-monoenergetic protons from microstructured targets[J].Nature,2006,439(7075):445-448.
    [11]Schollmeier M,Becker S,Geiel M,et al.Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices[J].Physical Review Letters,2008,101(5):055004.
    [12]Harres K,Alber I,Tauschwitz A,etal.Beam collimation and transport of quasineutral laseraccelerated protons by a solenoid field[J].Physics of Plasmas,2010,17(2):023107.
    [13]Busold S,Schumacher D,Deppert O,et al.Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source[J].Physical Review Special Topics-Accelerators and Beams,2013,16(10):101302.
    [14]Hofmann I.Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons[J].Physical Review Special Topics-Accelerators and Beams,2013,16(4):041302.
    [15]Hofmann I,Meyer-ter-Vehn J,Yan X Q,et al.Chromatic energy filter and characterization of laseraccelerated proton beams for particle therapy[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2012,681:44-54.
    [16]Sonobe R,Kawata S,Miyazaki S,et al.Suppression of transverse proton beam divergence by controlled electron cloud in laser-plasma interactions[J].Physics of Plasmas,2005,12(7):073104.
    [17]Lapostolle P M.Possible emittance increase through filamentation due to space charge in continuous beams[J].IEEE Transactions on Nuclear Science,1971,18(3):1101-1104.
    [18]Dong Y,Yang W Y,Chen J,et al.Design of external magnetic field loading modules for 3Dfully electromagnetic and PIC simulation parallel code NEPTUNE[J].High Power Laser and Particle Beams,2010,22(3):664-670.董烨,杨温渊,陈军,等.并行3维全电磁粒子模拟软件NEPTUNE的外加磁场模块设计[J].强激光与粒子束,2010,22(3):664-670.
    [19]Vaughan J R M.Representation of axisymmetric magnetic fields in computer programs[J].IEEETransactions on Electron Devices,1972,19(2):144-151.
    [20]Burris-Mog T,Harres K,Nürnberg F,et al.Laser accelerated protons captured and transported by a pulse power solenoid[J].Physical Review Special Topics-Accelerators and Beams,2011,14(12):121301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700