用户名: 密码: 验证码:
深水斜坡类型与沉积过程及其产物研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An Overview of Deep-water Slope Types and Their Corresponding Sedimentary Processes and Productions
  • 作者:马本俊 ; 秦志亮 ; 吴时国 ; 高微 ; 高金尉 ; 王吉亮 ; 孙金 ; 陈传绪
  • 英文作者:MA BenJun;Qin ZhiLiang;WU ShiGuo;GAO Wei;GAO JinWei;WANG JiLiang;SUN Jin;CHEN ChuanXu;Acoustic Science and Technology Laboratory,Harbin Engineering University;College of Underwater Acoustic Engineering,Harbin Engineering University;Laboratory of Marine Geophysics and Georesource,Institute of Deep-sea Science and Engineering,CAS;Functional Laboratory for Marine Geology and Environment,Qingdao National Laboratory for Marine Science and Technology;University of Chinese Academy of Sciences(UCAS);Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences;
  • 关键词:深水斜坡 ; 陆架斜坡 ; 碳酸盐斜坡 ; 火山斜坡 ; 南海
  • 英文关键词:deep-water slope;;continental-shelf slope;;carbonate slope;;volcanic slope;;South China Sea
  • 中文刊名:CJXB
  • 英文刊名:Acta Sedimentologica Sinica
  • 机构:哈尔滨工程大学水声技术重点实验室;哈尔滨工程大学水声工程学院;中国科学院深海科学与工程研究所深海地球物理与资源研究室;青岛国家海洋科学与技术实验室海洋地质研究室;中国科学院大学;中国科学院海洋研究所海洋地质与环境重点实验室;
  • 出版日期:2018-04-12 16:09
  • 出版单位:沉积学报
  • 年:2018
  • 期:v.36
  • 基金:国家自然科学基金项目(41506072,41876053);; 国家重点基础研究发展计划(973计划)(2015CB251201);; 广州海洋地质调查局海洋区域调查项目(GZH201400210,DD20160140)~~
  • 语种:中文;
  • 页:CJXB201806002
  • 页数:16
  • CN:06
  • ISSN:62-1038/P
  • 分类号:20-35
摘要
深水斜坡沉积规律对深水油气勘探开发以及深水地质灾害防护具有重要的意义,因此深水斜坡沉积过程一直是海洋地质学家关注的焦点。但是由于海底斜坡沉积类型多样,影响因素众多,导致深水斜坡沉积过程及其产物极其复杂。因此,为了更加全面系统的研究深水斜坡沉积规律,有必要对深水斜坡沉积研究进展进行系统的总结和梳理。通过对前人研究成果的分析,从深水斜坡发育的不同背景出发,将深水斜坡划分为三种类型:陆架斜坡、碳酸盐斜坡以及火山斜坡,并综述了近年来不同类型斜坡沉积过程及其产物的研究进展,以期望为我国南海深水斜坡沉积过程研究以及深水油气勘探有所启示。
        Depositional processes in deep-water slopes have been an important research focus for marine geologists because they have significant implications for deep-water hydrocarbon exploration and deep-water geological hazard prevention. Due to multiple sedimentary types and lots of controlling factors,the sedimentary processes on the deep-water slope and these productions are very complex. Therefore,it is necessary to summarize and organize research advances of deep-water slope sedimentology to help more comprehensively and systematically study deep-water slope sedimentation. Based on sedimentary settings,this paper divides the slopes into three types: continental-shelf slope,carbonate slope,and volcanic slope. The sedimentology of different types of deep-water slopes were overviewed systematically.We expect it to have implications for the study of deep-water slope sedimentation and help improve deep-water hydrocarbon exploration in the South China Sea.
引文
[1]《全球变化及其区域响应》科学指导与评估专家组.深入探索全球变化机制:国家自然科学基金委重大研究计划的战略研究[J].中国科学(D辑):地球科学,2012,42(6):795-804.[Scientific Steering Group of the Major Project"Global Change and Regional Response". Exploring the mechanism of global change—Research strategy of major projects of the National Natural Science Foundation of China[J]. Science China(Seri. D):Earth Sciences,2012,42(6):795-804.]
    [2] Dott Jr R H. Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin,1963,47(1):104-128.
    [3] Shanmugam G,Spalding T D,Rofheart D H. Process sedimentology and reservoir quality of deep-marine bottom-current reworked sands(sandy contourites):An example from the Gulf of Mexico[J].AAPG Bulletin,1993,77(7):1241-1259.
    [4] Shanmugam G. High-density turbidity currents; are they sandy debris flows?[J]. Journal of Sedimentary Research,1996,66(1):2-10.
    [5]徐景平.海底浊流研究百年回顾[J].中国海洋大学学报(自然科学版),2014,44(10):98-105.[Xu Jingping. Turbidity urrent research in the past century:An overview[J]. Periodical of Ocean University of China,2014,44(10):98-105.]
    [6] Jakobsson S P,Gudmundsson G,Moore J G. Geological monitoring of Surtsey,Iceland,1967-1998[J]. Surtsey Research,2000,11:99-108.
    [7] Yuan S Q,Wu S G,Thomas L,et al. Fine-grained pleistocene deepwater turbidite channel system on the slope of Qiongdongnan Basin,northern South China Sea[J]. Marine and Petroleum Geology,2009,26(8):1441-1451.
    [8] Mc Laughlin C J,Smith C A,Buddemeier R W,et al. Rivers,runoff,and reefs[J]. Global and Planetary Change,2003,39(1/2):191-199.
    [9] Shanmugam G.深水砂体成因研究新进展[J].石油勘探与开发,2013,40(3):294-301.[Shanmugam G. New perspectives on deepwater sandstones:Implications[J]. Petroleum Exploration and Development,2013,40(3):294-301.]
    [10]吴时国,秦志亮,王大伟,等.南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J].地球物理学报,2011,54(12):3184-3195.[Wu Shiguo,Qin Zhiliang,Wang Dawei,et al. Seismic characteristics and triggering mechanism analysisi of mass transport deposits in the nothern continental slope of the South China Sea[J]. Chinese Journal of Geophysics,2011,54(12):3184-3195.]
    [11] Gong C L,Wang Y M,Peng X C,et al. Sediment waves on the South China Sea Slope off southwestern Taiwan:Implications for the intrusion of the northern Pacific deep water into the South China Sea[J]. Marine and Petroleum Geology,2012,32(1):95-109.
    [12]宋海斌.南海深海物理过程与地质过程的关系探讨[J].热带海洋学报,2012,31(3):10-20.[Song Haibin. On relationship between physical process and geological process in South China Sea deep[J]. Journal of Tropical Oceanography,2012,31(3):10-20.]
    [13]吴嘉鹏,王英民,王海荣,等.深水重力流与底流交互作用研究进展[J].地质论评,2012,58(6):1110-1120.[Wu Jiapeng,Wang Yingmin,Wang Hairong,et al. The interaction between deep-water turbidity and bottom currents:A review[J]. Geological Review,2012,58(6):1110-1120.]
    [14] Gong C L,Wang Y M,Steel R J,et al. Flow processes and sedimentation in unidirectionally migrating deep-water channels:From a three-dimensional seismic perspective[J]. Sedimentology,2016,63(3):645-661.
    [15] Normark W R,Piper D J W. Deep-sea fan-valleys,past and present[J]. Geological Society of America Bulletin,1969,80(9):1859-1866.
    [16] Normark W R. Fan valleys,channels,and depositional lobes on modern submarine fans:characters for recognition of sandy turbidite environments[J]. AAPG Bulletin,1978,62(6):912-931.
    [17] Droxler A W,Schlager W. Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas[J]. Geology,1985,13(11):799-802.
    [18] Watkins R T. Volcano-tectonic control on sedimentation in the Koobi Fora sedimentary basin,Lake Turkana[J]. Geological Society,London,Special Publications,1986,25(1):85-95.
    [19] Glaser K S,Droxler A W. High production and highstand shedding from deeply submerged carbonate banks,northern Nicaragua Rise[J]. Journal of Sedimentary Research,1991,61(1):128-142.
    [20] Wilson P A,Roberts H H. Carbonate-periplatform sedimentation by density flows:A mechanism for rapid off-bank and vertical transport of shallow-water fines[J]. Geology,1992,20(8):713-716.
    [21] Clark J D,Pickering K T. Submarine channels:processes and architecture[M]. London:Vallies Press,1996:13-172.
    [22] Hiscott R N,Hall F R,Pirmez C. Turbidity-current overspill from the Amazon Channel:Texture of the silt/sand load,paleoflow from anisotropy of magnetic susceptibility, and implications for flow processes[M]//Flood R D,Piper D J W,Klaus A,et al. Proceedings of the ocean drilling program,scientific results. College Station,Texas:National Science Foundation,1997:53-78.
    [23] Jobe Z R,Sylvester Z,Parker A O,et al. Rapid Adjustment of Submarine Channel Architecture To Changes In Sediment Supply[J]. Journal of Sedimentary Research,2015,85(6):729-753.
    [24] Ding W W,Li J B,Li J,et al. Morphotectonics and evolutionary controls on the Pearl River Canyon system,South China Sea[J].Marine Geophysical Research,2013,34(3/4):221-238.
    [25] Wilson J L. Cyclic and reciprocal sedimentation in Virgilian strata of southern New Mexico[J]. Geological Society of America Bulletin,1967,78(7):805-818.
    [26] Betzler C,Hübscher C,Lindhorst S,et al. Lowstand wedges in carbonate platform slopes(Quaternary,Maldives,Indian Ocean)[J]. Depositional Record,2016,2(2):1-12.
    [27] Lantzsch H,Roth S,Reijmer J J G,et al. Sea-level related resedimentation processes on the northern slope of Little Bahama Bank(Middle Pleistocene to Holocene)[J]. Sedimentology,2007,54(6):1307-1322.
    [28] Casalbore D,Romagnoli C,Chiocci F,et al. Morpho-sedimentary characteristics of the volcaniclastic apron around Stromboli volcano(Italy)[J]. Marine Geology,2010,269(3/4):132-148.
    [29] Shanmugam G. 50 years of the turbidite paradigm(1950s-1990s):Deep-water processes and facies models—a critical perspective[J].Marine and Petroleum Geology,2000,17(2):285-342.
    [30] Faugères J C,Stow D A V,Imbert P,et al. Seismic features diagnostic of contourite drifts[J]. Marine Geology,1999,162(1):1-38.
    [31] Lüdmann T,Wong H K,Berglar K. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments[J]. Geophysical Research Letters,2005,32(5):L05614.
    [32] Chen G X,Hou Y J,Chu X Q. Mesoscale eddies in the South China Sea:Mean properties,spatiotemporal variability,and impact on thermohaline structure[J]. Journal of Geophysical Research,2011,116(C6):C06018.
    [33] Rebesco M,Hernández-Molina F J,van Rooij D,et al. Contourites and associated sediments controlled by deep-water circulation processes:State-of-the-art and future considerations[J]. Marine Geology,2014,352:111-154.
    [34]陈慧,解习农,毛凯楠.南海北缘一统暗沙附近深水等深流沉积体系特征[J].地球科学——中国地质大学学报,2015,40(4):733-743.[Chen Hui,Xie Xinong,Mao Kainan. Deep-water contourite depositional system in vicinity of yi'tong shoal on northern margin of the South China Sea[J]. Earth Science——Journal of China University of Geosciences,2015,40(4):733-743.]
    [35] Alford M H,Peacock T,Mac Kinnon J A,et al. The formation and fate of internal waves in the South China Sea[J]. Nature,2015,521(7550):65-69.
    [36] Chen H,Xie X,Zhang W Y,et al. Deep-water sedimentary systems and their relationship with bottom currents at the intersection of Xisha Trough and Northwest Sub-Basin,South China Sea[J].Marine Geology,2016,378:101-113.
    [37] Juan C,Ercilla G,Javier Hernández-Molina F,et al. Seismic evidence of current-controlled sedimentation in the Alboran Sea during the Pliocene and Quaternary:Palaeoceanographic implications[J].Marine Geology,2016,378:292-311.
    [38]李相博,卫平生,刘化清,等.浅谈沉积物重力流分类与深水沉积模式[J].地质论评,2013,59(4):607-614.[Li Xiangbo,Wei Pingsheng,Liu Huaqing,et al. Discussion on the classification of sediment gravity flow and the deep-water sedimentary model[J].Geological Review,2013,59(4):607-614.]
    [39]李云,郑荣才,朱国金,等.沉积物重力流研究进展综述[J].地球科学进展,2011,26(2):157-165.[Li Yun,Zheng Rongcai,Zhu Guojin,et al. Reviews on sediment gravity flow[J]. Advances in Earth Science,2011,26(2):157-165.]
    [40] Moscardelli L,Wood L. New classification system for mass transport complexes in offshore Trinidad[J]. Basin Research,2008,20(1):73-98.
    [41] Bull S,Cartwright J,Huuse M. A review of kinematic indicators from mass-transport complexes using 3D seismic data[J]. Marine and Petroleum Geology,2009,26(7):1132-1151.
    [42] Kneller B,Buckee C. The structure and fluid mechanics of turbidity currents:A review of some recent studies and their geological implications[J]. Sedimentology,2000,47(S1):62-94.
    [43]李磊,李彬,王英民,等.块体搬运沉积体系地震地貌及沉积构型:以珠江口盆地和尼日尔三角洲盆地为例[J].中南大学学报(自然科学版),2013,44(6):2410-2416.[Li Lei,Li Bin,Wang Yingmin,et al. Seismic geomorphology and sedimentary architectures of mass transport deposits:Cases from Pearl River Mouth Basin and Niger Delta Basin[J]. Journal of Central South University(Science and Technology),2013, 44(6):2410-2416.]
    [44]牛新生,王成善.异地碳酸盐岩块体与碳酸盐岩重力流沉积研究及展望[J].古地理学报,2010,12(1):17-30.[Niu Xinsheng,Wang Chengshan. Problems and prospect in studies of allochthonous carbonate blocks and carbonate gravity flow deposits[J].Journal of Palaeogeography,2010,12(1):17-30.]
    [45] Sun Q L,Alves T,Xie X,et al. Free gas accumulations in basal shear zones of mass-transport deposits(Pearl River Mouth Basin,South China Sea):An important geohazard on continental slope basins[J]. Marine and Petroleum Geology,2017,81:17-32.
    [46] Sun Q L,Wu S G,Cartwright J,et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin,northern South China Sea[J]. Marine Geology,2012,315-318:1-14.
    [47] Wang D W,Wu S G,Qin Z L,et al. Seismic characteristics of the Huaguang mass transport deposits in the Qiongdongnan Basin,South China Sea:Implications for regional tectonic activity[J].Marine Geology,2013,346:165-182.
    [48] Wang L,Wu S G,Li Q P,et al. Architecture and development of a multi-stage Baiyun submarine slide complex in the Pearl River Canyon,northern South China Sea[J]. Geo-Marine Letters,2014,34(4):327-343.
    [49] Chen D X,Wang X J,V9lker D,et al. Three dimensional seismic studies of deep-water hazard-related features on the northern slope of South China Sea[J]. Marine and Petroleum Geology,2016,77:1125-1139.
    [50] Alfaro E,Holz M. Seismic geomorphological analysis of deepwater gravity-driven deposits on a slope system of the southern Colombian Caribbean margin[J]. Marine and Petroleum Geology,2014,57:294-311.
    [51] Qin Z L,Wu S G,Wang D W,et al. Mass transport deposits and processes in the north slope of the Xisha Trough,northern South China Sea[J]. Acta Oceanologica Sinica,2015,34(9):117-125.
    [52] Gong C L,Wang Y M,Hodgson D M,et al. Origin and anatomy of two different types of mass-transport complexes:A 3D seismic case study from the northern South China Sea margin[J]. Marine and Petroleum Geology,2014,54:198-215.
    [53] Li W,Alves T M,Wu S G,et al. Recurrent slope failure and submarine channel incision as key factors controlling reservoir potential in the South China Sea(Qiongdongnan Basin,South Hainan Island)[J]. Marine and Petroleum Geology,2015,64:17-30.
    [54] Falk P D,Dorsey R J. Rapid development of gravelly high-density turbidity currents in marine Gilbert-type fan deltas,Loreto Basin,Baja California Sur,Mexico[J]. Sedimentology,1998,45(2):331-349.
    [55] Postma G,Nemec W,Kleinspehn K L. Large floating clasts in turbidites:a mechanism for their emplacement[J]. Sedimentary Geology,1988,58(1):47-61.
    [56] Ma B J,Wu S G,Sun Q L,et al. The Late Cenozoic deep-water channel system in the Baiyun Sag,Pearl River Mouth Basin:Development and tectonic effects[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2015,122:226-239.
    [57]马本俊,吴时国,米立军,等.三维地震解释技术在南海北部陆缘深水水道体系中的应用[J].海洋地质与第四纪地质,2016,36(4):163-171.[Ma Benjun,Wu Shiguo,Mi Lijun,et al. Application of 3D seismic interpretation to the deepwater channel system on the northern continental margin of South China Sea[J]. Marine Geology&Quaternary Geology,2016,36(4):163-171.]
    [58] Saller A,Dharmasamadhi I N W. Controls on the development of valleys,canyons,and unconfined channel-levee complexes on the Pleistocene Slope of East Kalimantan,Indonesia[J]. Marine and Petroleum Geology,2012,29(1):15-34.
    [59]邓强.深水沉积研究综述及未来方向[J].西安科技大学学报,2014,34(1):26-32.[Deng Qiang. Research review and future direction of deep-water sedimentation[J]. Journal of Xi'an University of Science and Technology,2014,34(1):26-32.]
    [60]王英民,王海荣,邱燕,等.深水沉积的动力学机制和响应[J].沉积学报,2007,25(4):495-504.[Wang Yingmin,Wang Hairong,Qiu Yan,et al. Process of dynamics and its response of deep-water sedimentation[J]. Acta Sedimentologica Sinica,2007,25(4):495-504.]
    [61] Faugères J C,Stow D A V. Bottom-current-controlled sedimentation:A synthesis of the contourite problem[J]. Sedimentary Geology,1993,82(1/2/3/4):287-297.
    [62] Shanmugam G. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons[J]. Marine and Petroleum Geology,2003,20(5):471-491.
    [63]邵磊,李学杰,耿建华,等.南海北部深水底流沉积作用[J].中国科学D辑:地球科学,2007,37(6):771-777.[Shao Lei,Li Xuejie,Geng Jianhua,et al. Deep water bottom current deposition in the northern South China Sea[J]. Science in China Series DEarth Sciences,2007,37(6):771-777.]
    [64] Stow D A V,Hernandez-molina F J,Llave E,et al. Bedform-velocity matrix:The estimation of bottom current velocity from bedform observations[J]. Geology,2009,37(4):327-330.
    [65] Sun Q L,Cartwright J,Wu S G,et al. Submarine erosional troughs in the northern South China Sea:Evidence for Early Miocene deepwater circulation and paleoceanographic change[J]. Marine and Petroleum Geology,2016,77:75-91.
    [66] Gong C L,Wang Y M,Zhu W L,et al. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin,northern South China Sea[J]. AAPG Bulletin,2013,97(2):285-308.
    [67] Zhu M Z,Graham S,Pang X,et al. Characteristics of migrating submarine canyons from the middle Miocene to present:Implications for paleoceanographic circulation,northern South China Sea[J]. Marine and Petroleum Geology,2010,27(1):307-319.
    [68] Radbruch-Hall D H. Gravitational creep of rock masses on slopes[J]. Developments in Geotechnical Engineering,1978,14:607-657.
    [69] Shillington D J,Seeber L,Sorlien C C,et al. Evidence for widespread creep on the flanks of the Sea of Marmara transform basin from marine geophysical data[J]. Geology,2012,40(5):439-442.
    [70] Lee S H,Chough S K. High-resolution(2-7 kHz)acoustic and geometric characters of submarine creep deposits in the South Korea Plateau,East Sea[J]. Sedimentology,2001,48(3):629-644.
    [71] Li W,Alves T M,Wu S,et al. A giant,submarine creep zone as a precursor of large-scale slope instability offshore the Dongsha Islands(South China Sea)[J]. Earth&Planetary Science Letters,2016,451:272-284.
    [72] Burgess P M,Winefield P,Minzoni M,et al. Methods for identification of isolated carbonate buildups from seismic reflection data[J]. AAPG Bulletin,2013,97(7):1071-1098.
    [73] Lüdmann T,Kalvelage C,Betzler C,et al. The Maldives,a giant isolated carbonate platform dominated by bottom currents[J]. Marine and Petroleum Geology,2013,43:326-340.
    [74] Wunsch M,Betzler C,Lindhorst S,et al. Sedimentary dynamics along carbonate slopes(Bahamas archipelago)[J]. Sedimentology,2017,64(3):631-657.
    [75] Harper B B,Puga-Bernabéu,Droxler A W,et al. Mixed Carbonate-Siliciclastic sedimentation along the great barrier reef upper slope:A challenge to the reciprocal sedimentation model[J]. Journal of Sedimentary Research,2015,85(9):1019-1036.
    [76] Puga-Bernabéu,Webster J M,Beaman R J. Potential collapse of the upper slope and tsunami generation on the Great Barrier Reef margin,north-eastern Australia[J]. Natural Hazards,2013,66(2):557-575.
    [77] Mulder T,Ducassou E,Eberli G P,et al. New insights into the morphology and sedimentary processes along the western slope of Great Bahama Bank[J]. Geology,2012,40(7):603-606.
    [78] Mulder T,Ducassou E,Gillet H,et al. First discovery of channellevee complexes in a modern deep-water carbonate slope environment[J]. Journal of Sedimentary Research,2014,84(11):1139-1146.
    [79] Mulder T,Ducassou E,Gillet H,et al. Canyon morphology on a modern carbonate slope of the Bahamas:Evidence of regional tectonic tilting[J]. Geology,2012,40(9):771-774.
    [80] Valladares M I. Siliciclastic-carbonate slope apron in an immature tensional margin(Upper Precambrian-Lower Cambrian),Central Iberian Zone,Salamanca,Spain[J]. Sedimentary Geology,1995,94(3/4):165-186.
    [81] Tucker M E,Wright V P. Carbonate sedimentology[M]. Cambridge:Blackwell Scientific,1990.
    [82] Mullins H T,Newton C R,Heath K,et al. Modern deep-water coral mounds north of Little Bahama Bank:Criteria for recognition of deep-water coral bioherms in the rock record[J]. Journal of Sedimentary Petrology,1981,51(3):999-1013.
    [83] Betzler C,Fürstenau J,Lüdmann T,et al. Sea-level and oceancurrent control on carbonate-platform growth,Maldives,Indian Ocean[J]. Basin Research,2013,25(2):172-196.
    [84] Vecsei A,Sanders D G K. Sea-level highstand and lowstand shedding related to shelf margin aggradation and emersion,Upper Eocene-Oligocene of Maiella carbonate platform,Italy[J]. Sedimentary Geology,1997,112(3/4):219-234.
    [85] Wilson P A,Roberts H H. Density cascading:off-shelf sediment transport,evidence and implications,Bahama Banks[J]. Journal of Sedimentary Research,1995,65(1a):45-56.
    [86] Ferro C E,Droxler A W,Anderson J B,et al. Late Quaternary shift of mixed siliciclastic-carbonate environments induced by glacial eustatic sea-level fluctuations in Belize[M]//Harris P M,Saller A H,Simo J A. Advances in carbonate sequence stratigraphy:application to reservoirs, outcrops, and models. Tulsa, Okla:SEPM,1999.
    [87] Dolan J F. Eustatic and tectonic controls on deposition of hybrid siliciclastic/carbonate basinal cycles:Discussion with examples[J].AAPG Bulletin,1989,73(10):1233-1246.
    [88] Tucker M E. Mixed clastic-carbonate cycles and sequences:Quaternary of egypt and carboniferous of England[J]. Geologia Croatica,2003,56(1):19-37.
    [89] Mount J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J]. Geology,1984,12(7):432-435.
    [90] Betzler C,Lindhorst S,Eberli G P,et al. Periplatform drift:The combined result of contour current and off-bank transport along carbonate platforms[J]. Geology,2014,42(10):871-874.
    [91] Ma B J,Wu S G,Mi L J,et al. Mixed carbonate-siliciclastic deposits in a peri-platform submarine channel,Pearl River Mouth Basin[J]. Journal of Earth Science,2018,29(3):707-720.
    [92] Reijmer J J G,Mulder T,Borgomano J. Carbonate slopes and gravity deposits[J]. Sedimentary Geology,2015,317:1-8.
    [93] Capua A D,Groppelli G. Application of actualistic models to unravel primary volcanic control on sedimentation(Taveyanne Sandstones,Oligocene Northalpine Foreland Basin)[J]. Sedimentary Geology,2016,336:147-160.
    [94] Sohn Y K,Chough S K. Depositional processes of the Suwolbong tuff ring,Cheju Island(Korea)[J]. Sedimentology,1989,36(5):837-855.
    [95] Schmincke H U,Sumita M. Volcanic evolution of Gran Canaria reconstructed from apron sediments:Synthesis of VICAP project drilling[M]//Weaver,P P E,Schmincke H U,Firth J V,et al.Proceedings of the ocean drilling program,scientific results. College Station,Texas,USA:Ocean Drilling Program,1998,157:443-469.
    [96] Mitchell N C,Masson D G,Watts A B,et al. The morphology of the submarine flanks of volcanic ocean islands:A comparative study of the Canary and Hawaiian hotspot islands[J]. Journal of Volcanology and Geothermal Research,2002,115(1/2):83-107.
    [97] Bosman A,Chiocci F L,Romagnoli C. Morpho-structural setting of Stromboli volcano revealed by high-resolution bathymetry and backscatter data of its submarine portions[J]. Bulletin of Volcanology,2009,71(9):1007.
    [98] Kaneko T,Maeno F,Nakada S. 2014 mount ontake eruption:characteristics of the phreatic eruption as inferred from aerial observations[J]. Earth,Planets and Space,2016,68(1):72.
    [99] Kokelaar B P,Durant G P. The submarine eruption and erosion of Surtla(Surtsey),Iceland[J]. Journal of Volcanology and Geothermal Research,1983,19(3/4):239-246.
    [100] Charbonnier S J,Germa A,Connor C B,et al. Evaluation of the impact of the 2010 pyroclastic density currents at Merapi volcano from high-resolution satellite imagery,field investigations and numerical simulations[J]. Journal of Volcanology&Geothermal Research,2013,261(3):295-315.
    [101] Romagnoli C,Jakobsson S P. Post-eruptive morphological evolution of island volcanoes:Surtsey as a modern case study[J]. Geomorphology,2015,250:384-396.
    [102] Romagnoli C,Kokelaar P,Casalbore D,et al. Lateral collapses and active sedimentary processes on the northwestern flank of Stromboli volcano,Italy[J]. Marine Geology,2009,265(3/4):101-105.
    [103] Romagnoli C,Casalbore D,Chiocci F L,et al. Offshore evidence of large-scale lateral collapses on the eastern flank of Stromboli,Italy,due to structurally-controlled,bilateral flank instability[J].Marine Geology,2009,262(1/2/3/4)1-13.
    [104] Romagnoli C,Mancini F,Brunelli R. Historical shoreline changes at an active Island Volcano:Stromboli,Italy[J]. Journal of Coastal Research,2006,22(4):739-749.
    [105] M B J,Wu S G,Betzler C et al. Geometry,internal architecture,and evolution of buried volcanic mounds in the northern South China Sea[J]. Marine and Petroleum Geology,2018,97:540-555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700