用户名: 密码: 验证码:
干旱条件下夏玉米地-气温差的影响因素及其模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influencing factors and their simulation of summer maize land surface-air temperature difference under drought conditions
  • 作者:刘二华 ; 周广胜
  • 英文作者:LIU Er-hua;ZHOU Guang-sheng;Chinese Academy of Meteorological Sciences;Collaborative Innovation Center on Forecast Meteorological Disaster Warning and Assessment,Nanjing University of Information Science & Technology;
  • 关键词:夏玉米 ; 地-气温差 ; 土壤水分变化 ; 模型
  • 英文关键词:summer maize;;land surface-air temperature difference;;soil water change;;model
  • 中文刊名:YYSB
  • 英文刊名:Chinese Journal of Applied Ecology
  • 机构:中国气象科学研究院;南京信息工程大学气象灾害预警协同创新中心;
  • 出版日期:2018-12-08 13:41
  • 出版单位:应用生态学报
  • 年:2019
  • 期:v.30
  • 基金:国家自然科学基金重点项目(41330531,31661143028,41501047);; 公益性行业(气象)科研专项(GYHY201506001-3,GYHY201506019)资助~~
  • 语种:中文;
  • 页:YYSB201901029
  • 页数:10
  • CN:01
  • ISSN:21-1253/Q
  • 分类号:236-245
摘要
地-气温差指标表征作物水分亏缺状况已经被广泛研究,但地-气温差随作物生育进程的变化特征及其影响因子的观测研究仍较少,制约着地-气温差的准确模拟.基于夏玉米2014年三叶期和2015年拔节期的5个灌溉水分控制试验资料的研究表明:随着夏玉米生育进程的推进,土壤水分的变化显著影响了夏玉米农田的地-气温差,土壤水分亏缺越严重,地-气温差越高.在整个水分处理期间,归一化植被指数是地-气温差的主要影响因子且两者呈显著的线性关系,但不同生育期地-气温差还受其他因子的影响:三叶期后受冠层吸收光合有效辐射比影响且呈显著的线性关系,三叶期至拔节期则受土壤相对湿度和空气相对湿度的影响且呈显著的线性关系.在此基础上,基于2014年试验资料建立了夏玉米全生育期地-气温差模拟模型、营养生长期地-气温差模拟模型和生殖生长期地-气温差模拟模型,并利用2015年夏玉米拔节期5个灌溉水分控制试验资料进行了模型验证,结果表明,夏玉米全生育期地-气温差模型可以解释2015年地-气温差变异的63%,但地-气温差分生育期模拟模型,即营养生长期地-气温差模拟模型和生殖生长期地-气温差模拟模型综合的模拟结果则可解释2015年地-气温差变异的79%.研究结果为基于地-气温差的作物干旱指标定量评估作物干旱提供了依据.
        Crop water deficit status characterized by land surface-air temperature difference( Ts-Ta)has been widely investigated. However,empirical evidence for characteristics and impact factors of Ts-Taconsidering the process of crop growth are less yet,which restricts the accurate simulation of Ts-Ta. Here,the data of Ts-Taduring the process of maize growth were obtained from five irrigation water control experiments after the period of summer maize 3-leaf stage in 2014 and jointing stage in2015. The results showed that Ts-Taof summer maize cropland was significantly affected by soil water content. Ts-Taincreased with the deficit of soil water. During summer maize water treatments,the normalized difference vegetation index( NDVI) was the main impact factor of Ts-Ta,with a significant linear relationship. However,during different growth stages,some additional factors including meteorological,biological and soil factors could also affect Ts-Ta,including canopy photosynthetic active radiation absorption ratio( fAPAR) after 3-leaf stage,relative soil water content( RSWC),and air relative humidity( RH) from 3-leaf stage to jointing stage. Then,the growth duration simulation model of Ts-Ta,vegetative growth simulation model of Ts-Taand reproductive growth simulation model of Ts-Tawere established in terms of the data in 2014. Those simulation models were validated based on the experimental data of five irrigation water treatments after summer maize jointing stage in 2015. The results showed that the growth duration simulation mode of Ts-Ta could explain 63% variation of Ts-Tain 2015. However,79% variation of Ts-Tacould be explained by the simulation results of the vegetative growth simulation model of Ts-Taand the reproductive growth simulation model of Ts-Ta. The results provided the basis for the quantitative evaluation of crop drought based on Ts-Ta.
引文
[1]Cheng T(程涛),Sun W-C(孙文超),Xu Z-X(徐宗学),et al.Monitoring crop condition in Northeast China by using canopy temperature derived from MODISremote sensing data.China Rural Water and Hydropower(中国农村水利水电),2017(8):9-14(in Chinese)
    [2]Yuan W-P(袁文平),Zhou G-S(周广胜).Theoretical study and research prospect on drought indices.Advances in Earth Science(地球科学进展),2004,19(6):982-991(in Chinese)
    [3]Sun H(孙灏),Chen Y-H(陈云浩),Sun H-Q(孙洪泉).Comparisons and classification system of typical remote sensing indexes for agricultural drought.Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2012,28(14):147-154(in Chinese)
    [4]Liu X-N(刘湘南),Zhou Z-A(周占鳌),Ni S-J(倪淑洁).Theory of CWSI and its application in maize growth monitoring and yield estimation by remote sensing.Journal of Northeast Normal University(Natural Science)(东北师范大学学报:自然科学版),1995(3):98-102(in Chinese)
    [5]Huang X-L(黄晓林),Li Y(李妍),Li G-Q(李国强).Research advance in relationship between canopy temperature and crop water status.Journal of Anhui Agricultural Sciences(安徽农业科学),2009,37(4):1511-1512(in Chinese)
    [6]Cheng W-D(程旺大),Yao H-G(姚海根),Zhao G-P(赵国平),et al.Experimental study on using canopy temperature to guide winter wheat irrigation.Chinese Agricultural Science Bulletin(中国农学通报),2000,16(5):42-44(in Chinese)
    [7]Wang C-Z(王纯枝),Yu Z-R(宇振荣),Sun D-F(孙丹峰),et al.Analysis on the factors affecting summer maize canopy-air temperature difference.Chinese Journal of Soil Science(土壤通报),2006,37(4):651-658(in Chinese)
    [8]Liu Y(刘云),Yu Z-R(宇振荣),Sun D-F(孙丹峰),et al.Difference of canopy-air temperature of winter wheat and its affecting factors.Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2004,20(3):63-69(in Chinese)
    [9]Tanner CB.Plant temperatures.Agronomy Journal,1963,55:210-211
    [10]Zhao F-N(赵福年),Wang R-J(王瑞君),Zhang H(张虹),et al.Advances in crop water stress index empirical model research based on canopy and atmosphere temperature difference.Journal of Arid Meteorology(干旱气象),2012,30(4):522-528(in Chinese)
    [11]Jackson RD.Canopy temperature and crop water stress.Advances in Irrigation,1982,1:43-85
    [12]Sui Y(隋月),Huang W-H(黄晚华),Yang X-G(杨晓光),et al.Characteristics and adaptation of seasonal drought in southern China under the background of global climate change.Ⅳ.Spatiotemporal characteristics of drought for maize based on crop water deficit index.Chinese Journal of Applied Ecology(应用生态学报),2013,24(9):2590-2598(in Chinese)
    [13]Li Y-Z(李韵珠),Lu J-W(陆锦文),Lyu M(吕梅),et al.The temperature-difference models of crop and soil water stress.Meteorological Monthly(气象),1992,18(5):9-15(in Chinese)
    [14]Moran MS,Clarke TR,Inoue Y,et al.Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index.Remote Sensing of Environment,1994,49:246-263
    [15]El Shirbeny MA,Ali AM,Rashash A,et al.Wheat yield response to water deficit under central pivot irrigation system using remote sensing techniques.World Journal of Engineering and Technology,2015,9:65-72
    [16]Hou Y-Y(侯英雨),He Y-B(何延波),Liu Q-H(柳钦火),et al.Research progress on drought indices.Chinese Journal of Ecology(生态学杂志),2007,26(6):892-897(in Chinese)
    [17]Qi S-H(齐述华),Zhang Y-P(张源沛),Niu Z(牛铮),et al.Application of water deficit index in drought monitoring in China with remote sensing.Acta Pedologica Sinica(土壤学报),2005,42(3):367-372(in Chinese)
    [18]Kang S-Z(康绍忠),Xiong Y-Z(熊运章).Methods for identifying the condition of water shortage and irrigation index.Journal of Hydraulic Engineering(水利学报),1991(1):34-39(in Chinese)
    [19]Ma X-Y(麻雪艳).The Occurrence and Development of Drought on Summer Maize and Its Quantitative Research.PhD Thesis.Beijing:Chinese Academy of Meteorological Sciences,2017(in Chinese)
    [20]Liang Y-L(梁银丽),Zhang C-E(张成娥).The relationship between discrepancy of canopy and air temperature and crop deficiency.Eco-Agriculture Research(生态农业研究),2000,8(1):24-26(in Chinese)
    [21]Cai H-J(蔡焕杰),Xiong Y-Z(熊运章),Liu H-J(刘海军).Study on diagnosis of crop water shortage by canopy-air temperature difference method.Agricultural Research in the Arid Areas(干旱地区农业研究),1993,11(3):49-54(in Chinese)
    [22]Cai H-J(蔡焕杰),Kang S-Z(康绍忠).Variation of cotton canopy temperature and its application in diagnosis of water deficit.Journal of Irrigation and Drainage(灌溉排水学报),1997,16(1):1-5(in Chinese)
    [23]Chen J(陈佳),Zhang W-Z(张文忠),Zhao X-T(赵晓彤),et al.Relationship between canopy-air temperature difference and soil moisture and meteorological factors in rice filling stage.Jiangsu Agricultural Sciences(江苏农业科学),2009(2):284-285(in Chinese)
    [24]Wu X-L(吴晓磊),Zhang J-Y(张寄阳),Liu H(刘浩),et al.Diagnosis method of cotton water status based on infrared thermal imaging.Chinese Journal of Applied Ecology(应用生态学报),2016,27(1):165-172(in Chinese)
    [25]Deng J-J(邓娟娟),Li C-Y(李春友),Ying X-P(颖欣培),et al.Study on the canopy-air temperature difference of tall fescue lawn and its environmental factors in turf grasses establishment period.Journal of Agricultural University of Hebei(河北农业大学学报),2014,37(1):49-53(in Chinese)
    [26]Meng P(孟平),Zhang J-S(张劲松),Gao J(高俊),et al.Variation of apple tree canopy-air temperature difference and its relations to environment factors.Chinese Journal of Applied Ecology(应用生态学报),2007,18(9):2030-2034(in Chinese)
    [27]Cui X(崔晓),Xu L-X(许利霞),Yuan G-F(袁国富),et al.Crop water stress index model for monitoring summer maize water stress based on canopy surface temperature.Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2005,21(8):22-24(in Chinese)
    [28]Li H(李泓),Li C-Y(李春友),Zhang J-S(张劲松),et al.Research on the relationship between environmental factors and canopy-air temperature difference of Manila lawn.Journal of Anhui Agriculture Sciences(安徽农业科学),2012,40(8):4795-4797(in Chinese)
    [29]Guo J-X(郭家选),Li Y-Z(李玉中),Yan C-R(严昌荣),et al.Evapotranspiration of winter field in North China Plain.Chinese Journal of Applied Ecology(应用生态学报),2006,17(12):2357-2362(in Chinese)
    [30]Si N(司南).Canopy Temperature Change Rule and Its Affecting Factors of the Winter Wheat in Beijing Daxing District.Master Thesis.Shandong:Shandong Agricultural University,2016(in Chinese)
    [31]Guo J-X(郭家选),Mei X-R(梅旭荣),Lu Z-G(卢志光).Analysis of the influence factors on winter wheat canopy temperature.Chinese Journal of Eco-Agriculture(中国农业生态学报),2003,11(4):24-26(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700