用户名: 密码: 验证码:
二氧化碳为原料制备尿素技术进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Urea Production Technology Using Carbon Dioxide
  • 作者:史建公 ; 刘志坚 ; 刘春生
  • 英文作者:Shi Jiangong;Liu Zhijian;Liu Chunsheng;Engineering Technology Research Institute of SINOPEC Catalyst Co.,Ltd.;SINOPEC Catalyst Co.,Ltd.;Sino-Global Energy;
  • 关键词:二氧化碳 ; 尿素 ; ; 二氧化碳汽提法 ; 甲铵脱水 ; 高温高压
  • 英文关键词:carbon dioxide;;urea;;ammonia;;carbon dioxide stripping;;carbamate dehydration;;high temperature and high pressure
  • 中文刊名:SYZW
  • 英文刊名:Sino-Global Energy
  • 机构:中国石化催化剂有限公司工程技术研究院;中国石化催化剂有限公司;《中外能源》杂志社;
  • 出版日期:2019-01-15
  • 出版单位:中外能源
  • 年:2019
  • 期:v.24
  • 语种:中文;
  • 页:SYZW201901014
  • 页数:12
  • CN:01
  • ISSN:11-5438/TK
  • 分类号:73-84
摘要
二氧化碳进行化学利用是减少大气中二氧化碳浓度的有效方法,在众多将二氧化碳转化为有机物的研究中,目前实现产业化的只有二氧化碳基生物降解塑料和尿素。尿素的工业化生产主要有氰氨化钙法和CO_2法,其中氰氨化钙法没有实现大规模工业化应用,目前世界上广泛采用氨和二氧化碳直接制备尿素法。以二氧化碳为原料制备尿素工艺又可分为水溶液全循环法、二氧化碳汽提法和氨汽提法。三种工艺各有优缺点,总体来看,水溶液全循环法成本较高;二氧化碳汽提法与前者相比,设备减少,流程简化,能耗降低;二氧化碳汽提法与氨汽提法相比,汽提压力降低,汽提效率提高,因此该工艺仅需低压分解而无需中压分解,对于新建尿素装置来说,二氧化碳汽提工艺投资较少,因此近年来新建尿素装置及大型尿素装置改造大都采用该工艺。目前对尿素制备反应的认识始终围绕着与甲铵相关的两个反应——生成甲铵的反应及甲铵脱水生成尿素的反应而展开。尽管工业上以二氧化碳和氨制备尿素有三种不同的工艺,但工艺条件均为高温高压,主要原因是没有找到合适的催化剂,因而研究者们一直在致力于常温常压条件下制备尿素的研究,不断在新型催化反应、光催化反应和电还原反应等方面进行探索。
        Chemical utilization of CO_2 is an effective way to reduce the CO_2 concentration in the atmosphere.Among many studies on the conversion of CO_2 into organics,only CO_2-based biodegradable plastics and urea have been industrialized.The industrial production of urea mainly adopts calcium cyanamide process and CO_2 process.Large-scale industrialized application of calcium cyanamide process has not been achieved,and ammonia and CO_2 are widely used for urea production in the world.The urea production processes using CO_2 can be divided into aqueous solution total recycle process,CO_2 stripping process and ammonia stripping process,each has its own advantages and disadvantages.In general,the aqueous solution total recycle process has a relatively high cost.Compared with the aqueous solution total recycle process,the CO_2 stripping process has fewer equipment,simpler process flow and lower energy consumption.Compared with the ammonia stripping pro-cess,the CO_2 stripping process has lower stripping pressure and higher stripping efficiency,so it only requires low pressure decomposition instead of medium pressure decomposition.For grassroots urea plant,CO_2 stripping process requires less investment,therefore,it has been used in most of the grassroots urea plant and large-scale revamped urea plant in recent years.At present,the understanding of urea production reaction focuses on two reactions related to carbamate,i.e.the reaction of carbamate formation and the dehydration reaction of carbamate to urea.Although there are three different processes for urea production using CO_2 and ammonia in the industry,high temperature and high pressure are required because no suitable catalyst has been found.Therefore,researchers have been committed to the study on urea production at normal temperature and pressure and continuously explored in the fields of new catalytic reaction,photocatalytic reaction and electroreduction reaction.
引文
[1]林洁.大气二氧化碳含量创新高[N].环球时报,2018-11-23(5).
    [2]史建公,刘志坚,刘春生.二氧化碳甲烷化研究进展[J].中外能源,2018,23(10):70-87.
    [3]史建公,刘志坚,刘春生.二氧化碳加氢制备甲醇技术进展[J].中外能源,2018,23(9):56-70.
    [4]袁一雪.二氧化碳也能变塑料?[N].中国科学报,2018-11-23(3).
    [5]朱秀高,曹慧,刘伟,等.尿素的营养与毒性研究进展[J].饲料工业,2010,31(17):16-19.
    [6]张民,刁其玉.反刍动物非蛋白氮尿素的应用研究[J].中国饲料,2002(5):6-8.
    [7]汪家铭.尿素应用新领域及其发展前景综述[J].化学工业,2013,31(11):24-28.
    [8]高恩元,何晖.我国尿素行业分析[C]//第十二届全国化肥市场(云天化国际)研讨会论文集,2007:129-141.
    [9]周和平.2014年尿素市场走势分析及2015年展望[J].氮肥技术,2015,36(2):52-54.
    [10]周和平.2015年尿素市场分析及2016年展望[J].煤化工,2016,44(1):68-70.
    [11]崔保命.国内尿素合成工艺研究[J].科技与企业,2012(1):173.
    [12]李珊珊.尿素合成工艺的比较[J].科技情报开发与经济,2010,20(11):215-217.
    [13]张开坚.新一代改进型CO2汽提与氨汽提尿素工艺综合比较与技术经济评价[J].大氮肥,1996,19(6):452-456.
    [14]武志宽,韩雪冬.二氧化碳汽提法工艺与氨汽提法工艺的比较[J].化肥设计,2013,51(6):25-27.
    [15]ZHANG Xiaoping,ZHANG Suojiang,YAO Pingjing,et al.Modeling and Simulation of High-pressure Urea Synthesis Loop[J].Computers&chemical engineering,2005,29(5):983-992.
    [16]PIOTROWSKI K,PIOTROWSKI J,SCHLESINGER J.Modelling of Complex Liquid-vapour Equilibria in the Urea Synthesis Process with the Use of Artificial Neural Network[J].Chemical Engineering and Processing:Process Intensification,2003,42(4):285-289.
    [17]沈华民.工业尿素合成理论(二)[J].化肥工业,2009,36(6):17-26.
    [18]LEMKOWITZ S M,VAN ERP J C,REKERS D M,et al.Phase Equilibria in Ammonia-Carbon Dioxide Systems at and above Urea Synthesis Conditions[J].Journal of Chemical Technology&Biotechnology,2007,30(1):85-101.
    [19]INOUE S,KANAI K,OTSUKA E.Equilibrium of Urea Synthesis.II[J].Bulletin of the Chemical Society of Japan,1972,45(6):1616-1619.
    [20]LEMKOWITZ S,GOEDEGEBUUR J,BERG P.Bubble-point Meaurements in the Ammonia-carbon Dioxide System[J].Journal of Applied Chemistry and Biotechnology,1971,21(8):229-232.
    [21]RAHIMPOUR M.A Non-ideal Rate-based Model for Industrial Urea Thermal Hydrolyser[J].Chemical Engineering and Processing:Process Intensification,2004,43(10):1299-307.
    [22]沈华民.用先进技术改造尿素合成---原理篇[J].大氮肥,2004,26(6):361-365.
    [23]PIOTROWSKI J,KOZAK R,KUJAWSKA M.Thermodynamic Model of Chemical and Phase Equilibrium in the Urea Synthesis Process[J].Chemical engineering science,1998,53(1):183-186.
    [24]沈华民.知识创新是工业尿素合成技术创新之本---实验室研究篇(续)[J].中氮肥,2008(4):1-7.
    [25]郭建明.尿素合成工艺及转化率提升研究[J].广东化工,2013,40(15):104,111.
    [26]董彦良.浅论尿素合成---CO2转化率的提高[J].化工设计通讯,1998,24(4):6-8.
    [27]林科兵,李孟春,黄军.CO2汽提法尿素生产中的水平衡[J].氮肥技术,2015,36(3):34-36.
    [28]张俊清.浅析影响尿素合成转化率的因素[J].西部煤化工,2011(1):24-26.
    [29]李晓东.尿素合成平衡转化率的影响因素及提高措施[J].合成氨与尿素,2018,44(1):1-2,7.
    [30]白庭芳,安立敦,徐贤伦,等.合成尿素用新型CO2原料气除氢催化剂的工业侧流试验[J].工业催化,1995,3(3):21-29.
    [31]郝郑平,安立敦,王弘立.新型合成尿素用CO2原料气消氢催化剂的研究[J].高等学校化学学报,2000,21(7):1098-1100.
    [32]王理西,张晨学.TH-1型脱氢催化剂在尿素生产中的应用[J].工业催化,2013,21(3):62-64.
    [33]任玉兵.DH-2型脱氢催化剂的使用及维护[J].化工设计通讯,2014,40(5):50-52.
    [34]唐文骞.氨气提法和二氧化碳气提法尿素生产技术的新进展、比较及评价[J].化肥工业,25(1):4-9.
    [35]SHIBATA M,FURUYA N.Electrochemical Synthesis of Urea at Gas-diffusion Electrodes III.Simultaneous Reduction of Carbon Dioxide and Nitrite Ions with Various Metal Catalysts[J].Journal of Electroanalytical Chemistry,2001,507(s1/2):177-184.
    [36]XIANG Xiaofeng,GUO Li,WU Xing,et al.Urea formation from Carbon Dioxide and Ammonia at Atmospheric Pressure[J].Environmental Chemistry Letters,2012,10(3):295-300.
    [37]SRINIVAS B,KUMARI V D,GULLAPELLI S,et al.Photocatalytic Synthesis of Urea from in Situ Generated Ammonia and Carbon Dioxide[J].Photochemistry&Photobiology,2012,88(2):233-241.
    [38]何志桥,屠锦军,宋爽,等.925银电极上同步电化学还原NO2-与CO2合成尿素[J].化工学报,2008,59(6):1541-1544.
    [39]周华敏.NO3-与CO2同步电化学还原制备尿素的研究[D].杭州:浙江工业大学,2007.
    [40]ELMAN A R,SMIRNOV V I.Urea Preparation by Oxidative Carbonylation of Ammonia[J].Journal of Environmental Science&Engineerin,2011,5(8):1006-1012.
    [41]CA N D,BOTTARELLI P,DIBENEDETTO A,et al.Palladium-catalyzed Synthesis of Symmetrical Urea Derivatives by Oxidative Carbonylation of Primary Amines in Carbon Dioxide Medium[J].Journal of Catalysis,2011,282(1):120-127.
    [42]COSTA M,CA N D,GABRIELE B,et al.Synthesis of 4H-3,1-Benzoxazines,Quinazolin-2-ones,and Quinoline-4-ones by Palladium-Catalyzed Oxidative Carbonylation of 2-Ethynylaniline Derivatives[J].Journal of Organic Chemistry,2004,69(7):2469-2477.
    [43]NOMURA R,HASEGAWA Y,ISHIMOTO M,et al.Carbonylation of amines by carbon dioxide in the presence of an organoantimony catalyst[J].The Journal of Organic Chemistry,1992,57(26):7339-7342.
    [44]PAZ J,PéREZ-BALADO C,IGLESIAS B,et al.Carbon Dioxide as a Carbonylating Agent in the Synthesis of 2-Oxazolidinones,2-Oxazinones,and Cyclic ureas:Scope and Limitations[J].The Journal of Organic Chemistry,2010,75(9):3037-3046.
    [45]PETERSON S L,STUCKA S M,DINSMORE C J.Parallel Synthesis of Ureas and Carbamates from Amines and CO2under Mild Conditions[J].Organic Letters,2010,12(12):1340-1343.
    [46]ION A,PARVULESCU V,JACOBS P,et al.Synthesis of Symmetrical or Asymmetrical urea Compounds from CO2via base Catalysis[J].Green Chemistry,2007,9(2):158-161.
    [47]SHI F,DENG Y F,SIMA T,et al.Alternatives to Phosgene and Carbon Monoxide:Synthesis of Symmetric Urea Derivatives with Carbon Dioxide in Ionic Liquids[J].Angewandte Chemie International Edition,2003,42(28):3379-3382.
    [48]TAMURA M,NORO K,HONDA M,et al.Highly Efficient Synthesis of Cyclic Ureas from CO2and Diamines by a Pure CeO2Catalyst Using a 2-Propanol Solvent[J].Green Chemistry,2013,15(6):1567-1577.
    [49]KALDOR S W,SIEGEL M G,FRITZ J E,et al.Use of Solid Supported Nucleophiles and Electrophiles for the Purification of Non-peptide Small Molecule Libraries[J].Tetrahedron Letters,1996,37(40):7193-7196.
    [50]BURGESS K,SHIN H,LINTHICUM D S.Solid Phase Syntheses of Unnatural Biopolymers Containing Repeating Urea Units[J].Angewandte Chemie International Edition,1995,34(8):907-909.
    [51]HUANG K T,SUN C M.Liquid-Phase Parallel Synthesis of Ureas[J].Bioorganic&Medicinal Chemistry Letters,2001,11(2):271-273.
    [52]RAJU B,KASSIR J M,KOGAN T P.Solution-phase Combinatorial Synthesis of Ureas Using Nitrophenylcarbamates[J].Bioorganic&Medicinal Chemistry Letters,1998,8(21):3043-3048.
    [53]SCIALDONE M A,SHUEY S W,SOPER P,et al.Phosgenated p-Nitrophenyl(polystyrene)ketoxime or Phoxime Resin.ANew Resin for the Solid-Phase Synthesis of Ureas via Thermolytic Cleavage of Oxime-Carbamates[J].The Journal of Organic Chemistry,1998,63(14):4802-4807.
    [54]CENINI S,PIZZOTTI M,CROTTI C,et al.Selective Ruthenium Carbonyl Catalysed Reductive Carbonylation of Aromatic Nitro Compounds to Carbamates[J].Journal of the Chemical Society,Chemical Communications,1984,19(19):1286-1287.
    [55]MCCUSKER J E,MAIN A D,JOHNSON K S,et al.W(CO)6-Catalyzed Oxidative Carbonylation of Primary Amines to N,N′-Disubstituted Ureas in Single or Biphasic Solvent Systems.Optimization and Functional Group Compatibility Studies[J].Cheminform,2000,31(48):5216-5222.
    [56]BARZAGLI F,MANI F,PERUZZINI M.Carbon Dioxide Uptake as Ammonia and Amine Carbamates and their Efficient Conversion into Urea and 1,3-Disubstituted Ureas[J].International Journal of CO2Utilization,2016,13:81-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700