用户名: 密码: 验证码:
动态现场原位(operando)表征技术在多相催化反应中的应用与进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in operando techniques for the heterogeneous catalytic reactions
  • 作者:孙杨 ; 丁豆豆 ; 林昌 ; 刘向林 ; 张超 ; 田鹏飞 ; 曹晨熙 ; 杨子旭 ; 徐晶 ; 韩一帆
  • 英文作者:SUN Yang;DING doudou;LIN Chang;LIU Xianglin;ZHANG Chao;TIAN Pengfei;CAO Chenxi;YANG Zixu;XU Jing;HAN Yifan;State Key Laboratory of Chemical Engineering, East China University of Science and Technology;School of Chemical Engineering and Energy, Zhengzhou University;
  • 关键词:动态现场原位技术 ; 催化 ; 原位表征 ; 催化剂构-效关系 ; 反应 ; 表面
  • 英文关键词:operando;;catalysis;;in-situ;;structure-performance relationship;;reaction;;surface
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:华东理工大学化学工程联合国家重点实验室;郑州大学化工与能源学院;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家重点研发计划(2018YFB0604501);; 国家自然科学基金(21576084,91534127)
  • 语种:中文;
  • 页:HGJZ201901023
  • 页数:18
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:267-284
摘要
动态现场原位(operando)表征是在接近过程工业反应条件下,揭示催化反应机理及工业催化剂结构演变的新兴动态结构解析技术。本文综述了operando表征技术在多相催化反应中的应用及发展趋势,从operando红外、operando拉曼、operando X射线衍射、operando穆斯堡尔谱、operando X射线吸收谱及operando X射线光电子能谱6个方面概述了operando技术的最新进展。此外,还介绍了正在兴起的operando联用技术,该技术综合多种operando技术为一体,能够在反应过程中对催化剂的结构全貌进行深度表征,实现工业催化剂的理性设计,将成为未来多相催化研究的重要手段。然而,目前operando技术的时间分辨率和空间分辨率仍需进一步提升,其巨大潜力依然有待开发。
        Operandocharacterization is a cutting-edge technique for revealing the catalytic reaction mechanism and the dynamic structure evolution of industrial catalysts under the conditions close toindustrial reaction. The development of operando technique and its application on heterogeneous catalysishave been reviewed, and the latest progress on operando infrared spectroscopy(IR), operando Raman,operando X-ray diffraction(XRD), operando M?ssbauer, operando X-ray adsorption spectra(XAS), andoperando X-ray photoelectron spectroscopy(XPS) have been summarized. In addition, the coupling ofvarious operando characterizations has also been introduced. Through this technique, the overall structureof the catalyst during reaction process can be characterized more deeply, and thus can realize the rational design of industrial catalysts. Therefore, we believe this coupling technique will become an important and prospective way to study heterogeneous catalysis. Nevertheless, the time and space resolution of current operando technique needs to be improved, and its enormous potential still requires to be further developed.
引文
[1] ROBERTS M W. Birth of the catalytic concept(1800—1900)[J].Catalysis Letters,2000,67(1):1-4.
    [2] BERZELIUS J J. Quelques idées sur une nouvelle force agissantdans les combinaisons des corps organiques[J]. Ann. Chim.,1836,61:146-151.
    [3] TALOR H S. A theory of the catalytic surface[J]. Proceedings ofthe Royal Society of London Series A,1925,108(745):105-111.
    [4] TOPS?E H. Developments in operando studies and in situ characterization of heterogeneous catalysts[J]. Journal of Catalysis,2003,216(1):155-164.
    [5] BA?ARES M A. Operando methodology:combination of in situ spectroscopy and simultaneous activity measurements undercatalytic reaction conditions[J]. Catalysis Today,2005,100(1):71-77.
    [6] WECKHUYSEN B M. Determining the active site in a catalyticprocess:operando spectroscopy is more than a buzzword[J].Physical Chemistry Chemical Physics,2003,5(20):4351-4360.
    [7] HAW J F. In-situ spectroscopy in heterogeneous catalysis[M].Wiley-VCH:Weinheim,2002.
    [8] ROBERT S. Heterogeneous catalysis[J]. Angewandte ChemieInternational Edition,2015,54(11):3465-3520.
    [9] SATTLER J J H B,GONZALEZ-JIMENEZ I D,MENS A M,et al.Operando UV-vis spectroscopy of a catalytic solid in a pilot-scalereactor:deactivation of a CrOx/Al2O3propane dehydrogenationcatalyst[J]. Chemical Communications,2013,49(15):1518-1520.
    [10] OKAWA T,ONISHI T,TAMARU K. Infrared and kinetic study ofammonia decomposition on supported iron catalysts:infraredobservation of molecularly adsorbed N2in smmonia decomposition[M]. Zeitschrift für Physikalische Chemie, 1977:239.
    [11] WECKHUYSEN B M. Snapshots of a working catalyst:possibilities and limitations of in situ spectroscopy in the field ofheterogeneous catalysis[J]. Chem. Commun.,2002,2:97-110.
    [12] FINGLAND B R,RIBEIRO F H,MILLER J T. Simultaneousmeasurement of X-ray absorption spectra and kinetics:a fixed-bed plug-flow operando reactor[J]. Catalysis Letters,2009,131(1):1-6.
    [13] MATAM S K,KORSAK O,BOCHER L,et al. Lab scale fixed-bedreactor for operando X-ray absorption spectroscopy for structureactivity studies of supported metal oxide catalysts[J]. Topics inCatalysis,2011,54(16):1213.
    [14] ZAERA F. Infrared and molecular beam studies of chemical reactions on solid surfaces[J]. International Reviews in PhysicalChemistry,2010,21(3):433-471.
    [15] WANG J,KISPERSKY V F NICHOLAS DELGASS W,et al.Determination of the Au active site and surface active species via operando transmission FTIR and isotopic transient experiments on2.3wt.%Au/TiO2for the WGS reaction[J]. Journal of Catalysis,2012, 289:171-178.
    [16] WILLEY R R. Fourier transform infrared spectrophotometer fortransmittance and diffuse reflectance measurements[J]. Appl.Spectrosc., 1976,30(6):593-601.
    [17] PAREDES‐NUNEZ A,LORITO D,BUREL L,et al. COhydrogenation on cobalt-based catalysts:tin poisoning unravelsCO in hollow sites as a main surface intermediate[J]. AngewandteChemie,2018,130(2):556-559.
    [18] ZHANG X-M,DENG Y-Q,TIAN P F,et al. Dynamic active sitesover binary oxide catalysts:In situ/operando spectroscopic studyof low-temperature CO oxidation over MnOx-CeO2catalysts[J].Applied Catalysis B:Environmental,2016,191:179-191.
    [19] ANDANSON J M,BAIKER A. Exploring catalytic solid/liquidinterfaces by in situ attenuated total reflection infraredspectroscopy[J]. Chem. Soc. Rev.,2010,39(12):4571-4584.
    [20] ALMEIDA A R,MOULIJN J A,MUL G. Photocatalytic oxidationof cyclohexane over TiO2:evidence for a Mars-van Krevelenmechanism[J]. The Journal of Physical Chemistry C,2011,115(4):1330-1338.
    [21] DU P,MOULIJN J A,MUL G. Selective photo(catalytic)-oxidationof cyclohexane:effect of wavelength and TiO2structure onproduct yields[J]. Journal of Catalysis,2006,238(2):342-352.
    [22] HOFFMANN F M. Infrared reflection-absorption spectroscopy ofadsorbed molecules[J]. Surface Science Reports,1983,3(2):107-192.
    [23] HOLLINS P,PRITCHARD J. Infrared studies of chemisorbedlayers on single crystals[J]. Progress in Surface Science,1985,19(4):275-349.
    [24] TILEKARATNE A,SIMONOVIS J P,LóPEZ FAGúNDEZ M F,etal. Operando studies of the catalytic hydrogenation of ethylene onPt(111)single crystal surfaces[J]. ACS Catalysis,2012,2(11):2259-2268.
    [25]吴征铠.拉曼光谱的发现和最近的发展[J].光谱学与光谱分析,1983(2):65-71.WU Zhenkai. The discovery and the recent development of Ramanspectroscopy[J]. Spectroscopy and Spectral Analysis,1983(2):65-71.
    [26]李灿,李美俊.拉曼光谱在催化研究中应用的进展[J].分子催化,2003(3):213-240.LI Can,LI Meijun. Progress in the application of Ramanspectroscopy in catalysis[J]. Journal of Molecular Catalysis(China),2003,3:213-240.
    [27] FU D,DAI W,XU X,et al. Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by operando Ramanspectroscopy[J]. ChemCatChem,2015,7(5):752-756.
    [28] ZHANG Y, FU D, LIU X, et al. Operando spectroscopic study ofdynamic structure of iron oxide catalysts during CO2hydrogenation[J]. ChemCatChem,2018,10(6):1272-1276.
    [29] XIONG G,FENG Z,LI J,et al. UV resonance Ramanspectroscopic studies on the genesis of highly dispersed surfacemolybdatespeciesonγ-alumina[J].TheJournalofPhysicalChemistryB,2000,104(15):3581-3588.
    [30] WU Z,ZHANG C,STAIR P C. Influence of absorption onquantitative analysis in Raman spectroscopy[J]. Catalysis Today,2006,113(1):40-47.
    [31] JIN S,FENG Z,FAN F,et al. UV Raman spectroscopiccharacterization of catalysts and catalytic active sites[J]. CatalysisLetters,2015,145(1):468-481.
    [32] BORDIGA S,DAMIN A,BONINO F,et al. The structure of theperoxo species in the TS-1 catalyst as investigated by resonantRaman spectroscopy[J]. Angewandte Chemie,2002,114(24):4928-4931.
    [33] GUO Q,SUN K,FENG Z,et al. A thorough investigation of theactive titanium species in TS-1 zeolite by in situ UV resonanceRaman spectroscopy[J]. Chemistry A:European Journal,2012,18(43):13854-13860.
    [34] PATLOLLA A,CARINO E V,EHRLICH S N,et al. Applicationof operando XAS,XRD,and Raman spectroscopy for phasespeciation in water gas shift reaction catalysts[J]. ACS Catalysis,2012,2(11):2216-2223.
    [35]张玉龙,邵光印,张征湃,等.活化气氛对CO2加氢制取低碳烯烃Fe-K催化剂构-效关系[J].化工学报,2018,69(2):690-698.ZHANG Yulong,SHAO Guangyin,ZHANG Zhengpai,et al.Activation atmospheres on structure-performance relationship ofK-promoted Fe catalysts for lower olefin synthesis from CO2hydrogenation[J]. CIESC Journal,2018,69(2):690-698.
    [36] CHEN J Y C,DANG L,LIANG H,et al. Operando analysis ofNiFe and Fe oxyhydroxide electrocatalysts for water oxidation:detection of Fe4+by M?ssbauer spectroscopy[J]. Journal of theAmerican Chemical Society,2015,137(48):15090-15093.
    [37] BORDIGA S,GROPPO E,AGOSTINI G,et al. Reactivity ofsurface species in heterogeneous catalysts probed by in situ X-rayabsorption techniques[J]. Cheminform,2013,44(20):1736-1850.
    [38] RODRIGUEZ J A,HANSON J C,CHUPAS P J. In-situ characterization of heterogeneous catalysts[J]. Focus on Catalysts,2013(12):8.
    [39] CHOI Y W,MISTRY H,CUENYA B R. New insights into workingnanostructured electrocatalysts through operando spectroscopyand microscopy[J]. Current Opinion in Electrochemistry,2017,1(1):95-103.
    [40] FEHSE M,MONCONDUIT L,FISCHER F,et al. Study of theinsertion mechanism of lithium into anatase by operando X-raydiffraction and absorption spectroscopy[J]. Solid State Ionics,2014,268:252-255.
    [41] YE Y F,WU C H,ZHANG L,et al. Using soft X-ray absorptionspectroscopy to characterize electrode/electrolyte interfaces insitu and operando[J]. Journal of Electron Spectroscopy&RelatedPhenomena,2017, 221:2-9.
    [42] BUGAEV A L,GUDA A A,LAZZARINI A,et al. In situ formationof hydrides and carbides in palladium catalyst:when XANES isbetter than EXAFS and XRD[J]. Catalysis Today,2017,283:119-126.
    [43] BOUBNOV A,CARVALHO H W P,DORONKIN D E,et al.Selective catalytic reduction of NO over Fe-ZSM-5:mechanisticinsights by operando HERFD-XANES and valence-to-core X-ray emission spectroscopy[J]. Journal of the American ChemicalSociety,2014,136(37):13006-13015.
    [44] KE J,ZHU W,JIANG Y,et al. Strong local coordination structureeffects on subnanometer PtOx clusters over CeO2nanowires probedby low-temperature CO oxidation[J]. ACS Catalysis,2015,5(9):5164-5173.
    [45] STARR D E, LIU Z, HAVECKER M, et al. Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectronspectroscopy[J]. Chemical Society Reviews,2013,42(13):5833-5857.
    [46] MACIá-AGULLóJA,CAZORLA-AMORóSD,LINARES-SOLANOA,et al. Oxygen functional groups involved in the styreneproduction reaction detected by quasi in situ XPS[J]. CatalysisToday,2005,102/103:248-253.
    [47] DIVINS N J,ANGURELL I,ESCUDERO C,et al. Nanomaterials.Influence of the support on surface rearrangements of bimetallicnanoparticles in real catalysts[J]. Science,2014,346(6209):620-623.
    [48] DIVINS N J,LLORCA J. In situ photoelectron spectroscopy studyof ethanol steam reforming over RhPd nanoparticles and RhPd/CeO2[J]. Applied Catalysis A:General,2016,518:60-66.
    [49] WOLFBEISSER A,KOVáCS G,KOZLOV S M,et al. Surfacecomposition changes of CuNi-ZrO2during methane decomposition:an operando NAP-XPS and density functional study[J]. CatalysisToday,2017,283:134-143.
    [50] BENTRUP U. Combining in situ characterization methods in oneset-up:looking with more eyes into the intricate chemistry of thesynthesis and working of heterogeneous catalysts[J]. Chem. Soc.Rev.,2010,39(12):4718-4730.
    [51] GOETZE J,YARULINA I,GASCON J,et al. Revealing latticeexpansion of small-pore zeolite catalysts during the methanol-to-olefins process using combined operando X-ray diffraction andUV-vis spectroscopy[J]. ACS Catalysis,2018,8(3):2060-2070.
    [52] CATSKH,WECKHUYSENBM.Combinedoperando X-raydiffraction/Ramanspectroscopyofcatalyticsolidsinthelaboratory:theCo/TiO2Fischer-Tropsch synthesis catalyst showcase[J]. ChemCatChem,2016,8(8):1531-1542.
    [53] YAO S,MUDIYANSELAGE K,XU W,et al. Unraveling thedynamicnatureofaCuO/CeO2catalystforCOoxidationinoperando:acombined study of XANES(fluorescence)and DRIFTS[J]. ACSCatalysis,2014,4(6):1650-1661.
    [54] TINNEMANS S J,MESU J G,KERVINEN K,et al. Combiningoperando techniques in one spectroscopic-reaction cell:newopportunities for elucidating the active site and related reactionmechanism in catalysis[J]. Catalysis Today,2006,113(1):3-15.
    [55] BRüCKNER A,SCHOLZ G,HEIDEMANN D,et al. Structuralevolution of H4PVMo11O40?x H2O during calcination and isobutaneoxidation:new insights into vanadium sites by a comprehensive in situ approach[J]. J. Catal.,2007,245(2):369-380.
    [56] BRUCKNER A. Killing three birds with one stone-simultaneousoperando EPR/UV-vis/Raman spectroscopy for monitoring catalyticreactions[J]. Chem Commun.,2005,13:1761-1763.
    [57] BRüCKNER A,KONDRATENKO E. Simultaneous operando EPR/UV-vis/laser-Raman spectroscopy—A powerful tool formonitoring transition metal oxide catalysts during reaction[J].Catal Today,2006,113(1):16-24.
    [58] VéLEZ R P,ELLMERS I,HUANG H,et al. Identifying activesites for fast NH3-SCR of NO/NO2mixtures over Fe-ZSM-5 byoperando EPR and UV-vis spectroscopy[J]. Journal of Catalysis,2014,316(3):103-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700