用户名: 密码: 验证码:
多相反应器的非均相特性测量技术进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progresses in measurement technologies of heterogeneous characteristics in multiphase reactors
  • 作者:李向阳 ; 王浩亮 ; 冯鑫 ; 陈杰 ; 毛在砂 ; 李国征 ; 杨超
  • 英文作者:LI Xiangyang;WANG Haoliang;FENG Xin;CHEN Jie;MAO Zaisha;LI Guozheng;YANG Chao;CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences;School of Chemical Engineering, University of Chinese Academy of Sciences;
  • 关键词:测量仪器 ; 多相反应器 ; 粒度分布 ; 浓度 ; 流场 ; 颗粒群
  • 英文关键词:measuring instrument;;multiphase reactor;;particle size distribution;;holdup;;flow field;;particle swarm
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国科学院过程工程研究所中国科学院绿色过程与工程重点实验室;中国科学院大学化学工程学院;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家重点研发计划(2016YFB0301701);; 国家自然科学基金(21427814,21878297,91534117);; 中国科学院前沿科学重点研究项目(QYZDJ-SSW-JSC030);中国科学院科研装备研制项目(YZ201641);; 恩泽生物质精细化工北京市重点实验室开放课题项目
  • 语种:中文;
  • 页:HGJZ201901006
  • 页数:27
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:52-78
摘要
为了增大传质和传热面积,多相反应器中分散相通常以颗粒形式(气泡、液滴或固体颗粒)分散、运动于连续相流体中,与周围的连续相及其他分散相颗粒的相互作用使颗粒和颗粒群呈现复杂的时空非均相行为。多相反应器中非均相特性的准确描述是发展准确的反应器模型、进行定量诊断分析和优化设计高效反应器的必要基础。本文总结了多相反应器中颗粒和颗粒群的复杂时空行为,提出了当前多相反应器非均相特性测量正面临的在线测量、高分散相浓度和多分散相等主要难题;综述了多相反应器测量技术研究的进展,指出了PC和PV等光纤测量技术是较经济的高浓度两相反应器的在线测量技术,而侵入式照相法测量结果更准确,具备解决上述测量难题方面的可行性,具备较好的应用前景,但要实现工业在线测量仍存在一些高难度的技术问题需要解决。
        In order to increase the mass/heat transfer area, the dispersed phases in multiphase reactors are usually dispersed into the continuous phase fluid in the form of particles(bubbles, droplets or solidparticles). The interactions with the surrounding continuous phase and other dispersed phase particlesmake the particles and particle swarms present the complex temporal and spatial heterogeneousbehaviors. It is the essential basis to describe accurately these heterogeneous characteristics for modelingaccurately, diagnosing quantitatively and optimizing multiphase reactors. In this work, the complextemporal and spatial heterogeneous behaviors of particles and particle swarms in multiphase reactors aresummarized and three main measurement problems, i. e., on-line, dense dispersed phase and multi-dispersed phase measurements are put forward in multiphase reactors. The progresses in the measurementtechniques of multiphase reactors are summarized. It is pointed out that the optical fiber measurementtechniques such as PC and PV probes are more economical for on-line measurement of the dense two-phase reactors, while the invasive photography technology is more accurate. It provides the feasibility to solve the above measurement problems and has a good applicable prospect. However, there are still sometechnical problems to be solved in order to realize the industrial on-line heterogeneous measurement of multiphase reactors.
引文
[1]毛在砂.颗粒群研究:多相流多尺度数值模拟的基础[J].过程工程学报, 2008, 28(4):645-659.MAO Z S. Knowledge on particle swarm:The important basis formulti-scale numerical simulation of multiphase flows[J]. TheChinese Journal of Process Engineering, 2008, 28(4):645-659.
    [2]李良超.气液反应器局部分散特性的实验与数值模拟[D].杭州:浙江大学, 2008.LI L C. Experiment and numerical simulation of local gasdispersion in gas-liquid reactors[D]. Hangzhou:ZhejiangUniversity, 2008.
    [3]王铁峰.气液(浆)反应器流体力学行为的实验研究和数值模拟[D].北京:清华大学, 2004.WANG T F. Experimental study and numerical simulation on thehydrodynamics in gas-liquid(slurry)reactors[D]. Beijing:Tsinghua University, 2004.
    [4] FENG X, CHENG J C, LI X Y, et al. Numerical simulation ofturbulent flow in a baffled stirred tank with an explicit algebraicstress model[J]. Chemical Engineering Science, 2012, 69(1):30-44.
    [5] FENG X, LI X Y, CHENG J C, et al. Numerical simulation ofsolid-liquid turbulent flow in a stirred tank with a two-phaseexplicit algebraic stress model[J]. Chemical Engineering Science,2012, 82(11):272-284.
    [6] FENG X, LI X Y, CHENG J C, et al. Numerical simulation ofliquid-liquid turbulent flow in a stirred tank with an explicitalgebraic stress model[J]. Chemical Engineering Research andDesign, 2013, 91(11):2114-2121.
    [7] LANE C D, PARISIEN V, MACCHI A, et al. Investigation ofbubble swarm drag at elevated pressure in a contaminated system[J]. Chemical Engineering Science, 2016, 152:381-391.
    [8] BOYER C, DUQUENNE A-M, WILD G. Measuring techniques ingas-liquid and gas-liquid-solid reactors[J]. Chemical EngineeringScience, 2002, 57:3185-3215.
    [9] ROLLBUSCH P, BOTHE M, BECKER M, et al. Bubble columnsoperated under industrially relevant conditions:currentunderstanding of design parameters[J]. Chemical EngineeringScience, 2015, 126:660-678.
    [10] MURTHY B N, GHADGE R S, JOSHI J B. CFD simulations ofgas–liquid–solidstirredreactor:Predictionofcriticalimpellerspeedfor solid suspension[J]. Chemical Engineering Science, 2007, 62(24):7184-7195.
    [11] MAO Z-S, YANG C. Challenges in study of single particles andparticle swarms[J]. Chinese Journal of Chemical Engineering,2009, 17(4):535-545.
    [12] PAGLIANTI A, PINTUS S, GIONA M. Time-series analysisapproach for the identification of flooding/loading transition ingas–liquid stirred tank reactors[J]. Chemical Engineering Science,2000, 55(23):5793-5802.
    [13] BRIDGE A G, LAPIDUS L, ELGIN J C. The mechanics of verticalgas-liquid fluidized systems I:Countercurrent flow[J]. AIChE Journal, 1964, 10(6):819-826.
    [14] DAVIDSON J F, HARRISON D. The behavior of a continuouslybubbling fluidized bed[J]. Chemical Engineering Science, 1966,21:731-738.
    [15] LOCKETT M J, KIRKPATRICK R D. Ideal bubbly flow andactual flow in bubble columns[J]. Transactions of the Institution ofChemical Engineers, 1975, 53:267-273.
    [16] CLIFT R, GRACE J R, WEBBER M E. Bubble, drops, andparticles[M]. New York:Academic Press, 1978.
    [17] ISHII M AND ZUBER N. Drag coefficient and relative velocity inbubbly, droplet or particulate flows[J]. AIChE Journal, 1979, 25:843-855.
    [18] FAN L S, TSUCHIYA K, BRENNER H. Bubble wake dynamics inliquids and liquid-solid suspensions[M]. Stoneham, MA:Butterworth-Heinemann, 1990.
    [19] ZHANG L, YANG C, MAO Z-S. Unsteady motion of a singlebubble in highly viscous liquid and empirical correlation of dragcoefficient[J]. Chemical Engineering Science, 2008, 63:2099-2106.
    [20] DAVIDSON J F, HARRISON D. The behaviour of a continuouslybubbling fluidized bed[J]. Chemical Engineering Science, 1966,21:731-738.
    [21] GRIFFITH P, WALLIS G B. Two-phase slug flow[J]. Journal ofHeat Transfer,1961,83(3):307-318.
    [22] MARRUCCI G. Rising velocity of a swarm of sphereical bubbles[J]. Industrial&Engineering Chemistry Fundamentals, 1965, 4(2):224-225.
    [23] SIMONNET M, GENTRIC C, OLMOS E, et al. Experimentaldetermination of the drag coefficient in a swarm of bubbles[J].Chemical Engineering Science, 2007, 62:858-866.
    [24] GARNIER C, LANCE M, MARIéJ L. Measurement of local flowcharacteristics in buoyancy-driven bubbly flow at high voidfraction[J]. Experimental Thermal and Fluid Science, 2002, 26:811-815.
    [25] ROGHAIR I, LAU Y M, DEEN N G, et al. On the drag force ofbubbles in bubble swarms at intermediate and high Reynoldsnumbers[J]. Chemical Engineering Science, 2011, 66:3204-3211.
    [26] BEHZADI A, ISSA R I, RUSCHE H. Modelling of dispersedbubble and droplet flow at high phase fractions[J]. ChemicalEngineering Science, 2004, 59:759-770.
    [27] MAO Z S. Numerical simulation of viscous flow through sphericalparticle assemblage with the modified cell model[J]. ChineseJournal of Chemical Engineering, 2002, 10(2):149-162.
    [28] MAO Z S, WANG Y F. Numerical simulation of mass transfer in aspherical particle assemblage with the cell model[J]. PowderTechnology, 2003, 134(1/2):145-155.
    [29] LI J H, KWAUK M S. Exploring complex systems in chemicalengineering—The multi-scale methodolgy[J]. Chemical EngineeringScience, 2003, 58(2):521-535.
    [30] LAU Y, ROGHAIR I, DEEN N G, et al. Numerical investigation ofthe drag closure for bubbles in bubble swarms[J]. ChemicalEngineering Science, 2011, 66:3309-3316.
    [31] KA?UNI?A, AKRAP M, KUZMANI?N. Effect of impeller typeand position in a batch cooling crystallizer on the growth of boraxdecahydrate crystals[J]. Chemical Engineering Research andDesign, 2013, 91(2):274-285.
    [32] SAWADA K. Mechanisms of crystal growth of ionic crystals in solution. Formation, transformation, and growth inhibition ofcalcium carbonates[M]//OHTAKI H. Crystallization processes.Chichester, England:John Wiley&Sons Ltd., 1998:39-68.
    [33]陆杰,王静康.反应结晶(沉淀)研究进展[J].化学工程, 1999, 27(4):24-27.LU J, WANG J K. Progress in the study of reactive crystallization(precipitation)[J]. Chemical Engineering, 1999, 27(4):24-27.
    [34] GARG R K, SARKAR D. Polymorphism control of p-aminobenzoic acid by isothermal anti-solvent crystallization[J].Journal of Crystal Growth, 2016, 454:180-185.
    [35]时钧,汪家鼎,余国琮,等.化学工程手册[M]. 2版.北京:化学工业出版社, 1996.SHI J, WANG J D, YU G C, et al. Manual of chemical engineering[M]. 2nd ed. Beijing:Chemical Industry Press, 1996.
    [36] GREEN D W. Handbook of industrial crystallization(SecondEdition)[M]. 2nd ed. Boston:Butterworth-Heinemann,2002.
    [37] DONG Y, NG W K, SHEN S, et al. Controlled antisolventprecipitation of spironolactone nanoparticles by impingementmixing[J]. International Journal of Pharmaceutics, 2011, 410:175-179.
    [38] PIRKLE C, FOGUTH L C, BRENEK S J, et al. Computationalfluid dynamics modeling of mixing effects for crystallization incoaxial nozzles[J]. Chemical Engineering and Processing, 2015,97:213-232.
    [39] KITAMURA M. Controlling factor of polymorphism incrystallization process[J]. Journal of Crystal Growth, 2002, 237-239:2205-2214.
    [40] Pixact Ltd. Pixact crystallization monitoring[EB/OL]. http://www.pixact.fi/crystals.html.
    [41]张佳.基于多阶段MPCA方法的间歇过程监测研究[D].北京:北京化工大学, 2006.ZHANG J. Multi-phase multiway principal component analysisbatch process monitoring study[D]. Beijing:Beijing University ofChemical Technology, 2006.
    [42]王津津.间歇反应结晶过程产品质量控制中的在线分析[D].广州:华南理工大学, 2012.WANG J J. On-line analysis for quality control in the batchreaction and crystallization process[D]. Guangzhou:South ChinaUniversity of Technology, 2012.
    [43]姚志湘,粟晖,许文强,等.过程分析技术的理念与发展[J].广西工学院学报, 2010, 21:4-10.YAO Z X, LI H, XU W Q, et al. Philosophy of process analyticaltechnology and development[J]. Journal of Guangxi University ofTechnology, 2010, 21:4-10.
    [44] LUCAS D, BEYER M, SZALINSKI P, et al. A new database onthe evolution of air-water flows along a large vertical pipe[J].International Journal of Thermal Sciences, 2010, 49:664-674.
    [45]高正明,王英深,施力田,等.搅拌槽内的气泡尺寸分布[J].高校化学工程学报, 1999, 8(3):283-287.GAO Z M, WANG Y S, SHI L T, et al. Bubble size distribution inaerated stirred vessels[J]. Journal of Chemical Engineering ofChinese Universities, 1999, 8(3):283-287.
    [46] VLAEV S D, MARTINOV M. Non-uniformity of gas dispersion inturbine-generated viscoelastic circulation flow[J]. The CanadianJournal of Chemical Engineering, 1998, 76(3):405-412.
    [47] HAN M Y, KIM W T, DOCKKO S. Collision efficiency factor ofbubble and particle(alpha bp)in DAF:theory and experimental verification[J]. Water Science and Technology, 2001, 43(8):139-144.
    [48] TAO D, HONAKER R, PAREKH BK, et al. Development ofpicobubble flotation for enhanced recovery of coarse phosphateparticles[M]//Technical Report, Florida Institute of PhosphateResearch, 2006:60.
    [49] YALCIN T, BYERS A, UGHADPAGA K. Dissolved gas method ofgenerating bubbles for potential use in ore flotation[J]. MineralProcessing and Extractive Metallurgy Review, 2002, 23(3/4):181-197.
    [50] CALDERBANK P H. The interfacial area in gas-liquid contactingwith mechanical agitation[J]. Transactions of the Institution ofChemical Engineers, 1958, 36:443-463.
    [51] ZHANG Y H, YANG C, MAO Z S. Large eddy simulation of thegas–liquid flow in a stirred tank[J]. AIChE Journal, 2008, 54(8):1963-1974.
    [52]禹耕之,毛在砂,杨超,等.一种适用于甲苯法己内酰胺工艺的多相反应器的流体分布器:CN200810110439.4[P]. 2008.YU G Z, MAO Z S, YANG C, et al. A fluid distributor formultiphase reactors suitable for toluene caprolactam process:CN200810110439.4[P]. 2008.
    [53] WANG S, METCALFE G, STEWART R L, et al. Solid-liquidseparation by particle-flow-instability[J]. Energy andEnvironmental Science, 2014, 7:3982-3988.
    [54] WANG L J, CHENG Y W, WANG Q B, et al. Progress in theresearch and development of p-xylene liquid phase oxidationprocess[J]. Frontiers of Chemical Engineering in China, 2007, 1(3):317-326.
    [55] ZHANG Y Z. Development outlook of China coal liquefactiontechnology[J]. Coal Science and Technology, 2006, 34(1):19-22.
    [56] STEYNBERG A R, DRY M E. Fischer-Tropsch technology[M].Amsterdam:Elsevier Publisher, 2004.
    [57] BEHKISH A, MEN Z, INGA J R, et al. Mass transfercharacteristics in a large-scale slurry bubble column with organicliquid mixtures[J]. Chemical Engineering Science, 2002, 57(16):3307-3324.
    [58] CHEN P, GUPTA P, DUDUKOVIC M P, et al. Hydrodynamics ofslurry bubble column during dimethyl ether(DME)synthesis:gas-liquid recirculation model and radioactive tracer studies[J].Chemical Engineering Science, 2006, 61(19):6553-6570.
    [59] VAN ELK E P, BORMAN P C, KUIPERS J A M, et al. Modelingof gas-liquid reactors-stability and dynamic behavior of ahydroformylation reactor[J]. Chemical Engineering Science, 2001,56(4):1491-1500.
    [60] ROSSI G. The design of bioreactors[J]. Hydrometallurgy, 2001,59:217-231.
    [61]方兆珩.生物氧化浸矿反应器的研究进展[J].黄金科学技术,2002, 10(6):1-7.FANG Z H. A review on design and development of bioreactors[J].Gold Science and Technology, 2002, 10(6):1-7.
    [62]周云龙,孙斌,李洪伟.多相流参数检测理论及其应用[M].北京:科学出版社, 2010.ZHOU Y L, SUN B, LI H W. Theory and application of multiphaseflow parameter detection[M]. Beijing:Science Press, 2010.
    [63] LI W, ZHENG P, JI J Y, et al. Floatation of granular sludge and itsmechanism:a key approach for high-rate denitrifying reactor[J].Bioresource Technology, 2014, 152:414-419.
    [64] VASSALLO P F, TRABOLD T A, MOORE W E, et al.Measurement of velocities in gas-liquid 2-phase flow using laser-doppler velocimetry[J]. Experiments in Fluids, 1993, 15:227-230.
    [65] WARSITO W, FAN L S. Measurement of real-time flow structuresin gas-liquid and gas-liquid-solid flow systems using electricalcapacitance tomography(ECT)[J]. Chemical Engineering Science,2001, 56:6455-6462.
    [66] MENA P C, RUZICKA M C, ROCHA F A, et al. Effect of solidson homogeneous-heterogeneous flow regime transition in bubblecolumns[J]. Chemical Engineering Science, 2005, 60:6013-6026.
    [67] JOLY-VUILLEMIN C, DE BELLEFON C, DELMAS H. Solideffects on gas-liquid mass transfer in three-phase slurry catalytichydrogenation of adiponitrile over Raney nickel[J]. ChemicalEngineering Science, 1996, 51:2149-2158.
    [68] MENA P C, PONS M N, TEIXEIRA J A, et al. Using imageanalysis in the study of multiphase gas absorption[J]. ChemicalEngineering Science, 2005, 60:5146-5152.
    [69] MENA P, ROCHA F, TEIXEIRA J, et al. Measurement of gasphase characteristics using a monofibre optical probe in a three-phase flow[J]. Chemical Engineering Science, 2008, 63(16):4100-4115.
    [70] YANG S F, LI X Y, YANG C, et al. Computational fluid dynamicssimulation and experimental measurement of gas and solid holdupdistributions in a gas-liquid-solid stirred reactor[J]. Industrialand Engineering Chemistry Research, 2016, 55(12):3276-3286.
    [71] BUSCIGLIO A, GRISAFI F, SCARGIALI F, et al. On themeasurement of local gas hold-up, interfacial area and bubblesize distribution in gas-liquid contactors via light sheet and imageanalysis:imaging technique and experimental results[J]. ChemicalEngineering Science, 2013, 102:551-566.
    [72] QIAN L, LU Y, ZHONG W Q, et al. Developing a novel fibre highspeed photography method for investigating solid volume fractionin a 3D spouted bed[J]. The Canadian Journal of ChemicalEngineering, 2013, 91(11):1793-1799.
    [73]于佩潜,门卓武,卜亿峰,等.多相流反应器流体力学参数测试技术进展[J].化工学报, 2013, 64(s1):8-20.YU P Q, MEN Z W, BU Y F, et al. Progress in measuringtechniques of hydrodynamic parameters on muti-phase flowreactors[J]. CIESC Journal, 2013, 64(s1):8-20.
    [74] LI X Y, YANG C, YANG S F, et al. Fiber-optical sensors:basicsand applications in multiphase reactors[J]. Sensors, 2012, 12(9):12519-12544.
    [75] WANG G Q, LI X Y, YANG C, et al. New vision probe based ontelecentric photography and its demonstrative applications in amultiphase stirred reactor[J]. Industrial and EngineeringChemistry Research, 2017, 56(23):6608-6617.
    [76]孙波.光纤探针在两相流局部特性研究中的应用[D].哈尔滨:哈尔滨工程大学, 2012.SUN B. Research on the local characteristics of two-phase flow byoptical fiber probe[D]. Harbin:Harbin Engineering University,2012.
    [77]孔维航.基于数据融合的光纤探针持气率估计算法研究及实现[D].秦皇岛:燕山大学, 2013.KONG W H. Study on estimation algorithm of optical fiber probevoid fraction based on data fusion and implementation[D].Qinhuangdao:Yanshan University, 2013.
    [78]林宗虎.能源动力中多相流热物理基础理论与技术研究[M].北京:中国电力出版社, 2010.LIN Z H. Theory and technology of multiphase flow thermophysicsin energy power[M]. Beijing:China Electric Power PublishingHouse, 2010.
    [79]杨胜,罗毓珊,陈听宽,等.垂直上升管中采用光纤探针测量截面气含率的实验研究[J].动力工程, 2006, 26(6):875-878.YANG S, LUO M S, CHEN T K, et al. Measurement of voidfraction in vertical rising pipes by using optical fiber probes[J].Journal of Power Engineering, 2006, 26(6):875-878.
    [80] ALIYUA A, KIM Y, CHOI S, et al. Development of a dual opticalfiber probe for the hydrodynamic investigation of a horizontalannular drive gas liquid ejector[J]. Flow Measurement andInstrumentation, 2017, 56:45-55.
    [81]刘凤,刘志华,郑君杰,等.基于双针光纤探头改进的破碎波卷入气泡尺寸测量方法研究[J].水动力学研究与进展, 2013, 28(3):283-290.LIU F, LIU Z H, ZHENG J J, et al. Methodology of an improvedtechnique for the bubble size measure in breaking waves usingdual-tip optical fiber probe[J]. Journal of Hydrodynamics, 2013,28(3):283-290.
    [82] XUE J, AL-DAHHAN M, DUDUKOVIC M P, et al. Bubbledynamics measurements using four-pint optical probe[J]. TheCanadianJournalofChemicalEngineering, 2003, 81(3/4):375-381.
    [83] ZHOU Y, DUDUKOVIC M P, LIU H, et al. Multiphasehydrodynamics and distribution characteristics in a monolith bedmeasured by optical fiber probe[J]. AIChE Journal, 2014, 60(2):740-748.
    [84] MUDDE R F. Advanced measurement techniques for GLS reactors[J]. The Canadian Journal of Chemical Engineering, 2010, 88(4):638-647.
    [85] SAITO T, OZAWA Y, MATSUDA K, et al. Bubbles and dropletsmeasurement via optical fiber probe processed by femtosecondpulse laser[C]//16th International Conference on NuclearEngineering. American Society of Mechanical Engineers, 2008:803-813.
    [86]李希,李兆奇,管小平,等.气液鼓泡塔流体力学研究进展[J].高校化学工程学报, 2015, 29(4):766-779.LI X, LI Z Q, GUAN X P, et al. Progress in hydrodynamics of gas-liquid bubble columns[J]. Journal of Chemical Engineering ofChinese Universities, 2015, 29(4):766-779.
    [87] HERBERT P M, GAUTHIER T A, BRIENS C L, et al.Application of fiber optic reflection probes to the measurement oflocal particle-velocity and concentration in gas-solid flow[J].Powder Technology, 1994, 80(3):243-252.
    [88] MATSUNO Y, YAMAGUCHI H, OKA T, et al. The use of opticfiber probes for the measurement of dilute particle concentrations-calibration and application to gas-fluidized bed carryover[J].Powder Technology, 1983, 36(2):215-221.
    [89] ELLIS N, BI H T, LIM C J, et al. Influence of probe scale andanalysis method on measured hydrodynamic properties of gas-fluidized beds[J]. Chemical Engineering Science, 2004, 59:1841-1851.
    [90] HONG J, TOMITA Y. Measurement of distribution of solidsconcentration on high-density gas-solids flow using an optical-fiber probe system[J]. Powder Technology, 1995, 83(1):85-91.
    [91]蔡进,李涛,孙启文,等.气固流化床固体浓度分布的冷模研究[J].过程工程学报, 2008(5):839-844./CAI J, LI T, SUN Q W, et al. Solid concentration distribution in agas-solid fluidized bed[J]. The Chinese Journal of ProcessEngineering, 2008(5):839-844.
    [92] ZHOU J, GRACE J R, QIN S, et al. Voidage profiles in acirculating fluidized-bed of square cross-section[J]. ChemicalEngineering Science, 1994, 49(19):3217-3226.
    [93] ZHANG W, TUNG Y, JOHNSSON F. Radial voidage profiles infast fluidized-beds of different diameters[J]. ChemicalEngineering Science, 1991, 46(12):3045-3052.
    [94] ZHANG H, JOHNSTON P M, ZHU J-X, et al. A novel calibrationprocedure for a fiber optic solids concentration probe[J]. PowderTechnology, 1998, 100(2/3):260-272.
    [95] WANG C, LI C, ZHU J X. Axial solids flow structure in a highdensity gas-solids circulating fluidized bed downer[J]. PowderTechnology, 2015, 272:153-164.
    [96]吴诚,高用祥,高希,等.湍动流化床过渡段中颗粒速度分布的光纤测量与模拟[J].高校化学工程学报, 2015, 29(1):11-19.WU C, GAO Y X, GAO X, et al. Particle velocity measurements intransition section of turbulent fluidized beds using optical fiberprobe and CFD simulation[J]. Journal of Chemical Engineering ofChinese Universities, 2015, 29(1):11-19.
    [97] ZHANG W N, JOHNSSON F, LECKNER B. Momentum probeand sampling probe for measurement of particle flow properties inCFB boilers[J]. Chemical Engineering Science, 1997, 52(4):497-509.
    [98] YE S, QI X, ZHU J X. Direct measurements of instantaneous solidflux in a CFB riser using a novel multifunctional optical fiberprobe[J]. Chemical Engineering and Technology, 2009, 32(4):580-589.
    [99] WU C, GAO Y, CHENG Y, et al. Solid concentration and velocitydistributions in an annulus turbulent fluidized bed[J]. ChineseJournal of Chemical Engineering, 2015, 23(7):1077-1084.
    [100] GENG Q, WANG P, ZHU X, et al. Flow dynamics and contactefficiency in a novel fast-turbulent fluidized bed with ring-feederinternals[J]. Particuology, 2015, 21:203-211.
    [101] HEERTJES P M, VERLOOP J, WILLEMS R. Measurement oflocal mass flow rates and particle velocities in fluid-solids flow[J].Powder Technology, 1970, 4(1):38-40.
    [102] SHI Z H, LI W F, QIAN W W, et al. Liquid-like granular filmfrom granular jet impact[J]. Chemical Engineering Science, 2017,162:1-9.
    [103] RAZZAK S A, BARGHI S, ZHU J-X. Application of electricalresistance tomography on liquid-solid two-phase flowcharacterization in an LSCFB riser[J]. Chemical EngineeringScience, 2009, 64:2851-2858.
    [104] SANG L, ZHU J X. Experimental investigation of the effects ofparticle properties on solids holdup in an LSCFB riser[J].Chemical Engineering Journal, 2012, 197:322-329.
    [105] RAZZAK S A, BARGHI S, ZHU J X. Application of electricalresistance tomography on liquid-solid two-phase flowcharacterization in an LSCFB riser[J]. Powder Technology, 2010,199:77-86.
    [106] SUN H Y, MAO Z S, YU G Z. Experimental and numerical studyof gas hold-up in surface aerated stirred tanks[J]. ChemicalEngineering Science, 2006, 61(12):4098-4110.
    [107]朱姝,包云雨,陈雷,等.用电导探针测定气液多层桨搅拌槽内气泡尺寸分布[J].高校化学工程学报, 2011, 25(6):977-984.ZHU S, BAO Y Y, CHEN L, et al. Bubble size distributionsmeasurement in a gas-liquid multi-impeller stirred tank by usingdual-conductivity probe[J]. Journal of Chemical Engineering ofChinese Universities, 2011, 25(6):977-984.
    [108]陈雷.热态多相搅拌反应器流体力学性能研究[D].北京:北京化工大学, 2009.CHEN L. Fluid dynamics of multi-phase stirred reactors atelevated temperature[D]. Beijing:Beijing University of ChemicalTechnology, 2009.
    [109] RAMPURE M R, KULKARNI A A, RANADE V V.Hydrodynamics of bubble column reactors at high gas velocity:Experiments and computational fluid dynamics(CFD)simulations[J]. Industrial and Engineering Chemistry Research, 2007, 46(25):8431-8447.
    [110] CHEN Z, ZHENG C, FENG Y, et al. Local bubble behavior inthree-phase fluidized beds[J]. The Canadian Journal of ChemicalEngineering, 1998, 76(2):315-318.
    [111] MAC TAGGART R S, NASR-EL-DIN H A, MASLIYAH J H. Aconductivity probe for measuring local solids concentration in aslurry mixing tank[J]. Separations Technology, 1993, 3(3):151-160.
    [112] MICHELETTI M, NIKIFORAKI L, LEE K C, et al. Particleconcentration and mixing characteristics of moderate-to-densesolid-liquid suspensions[J]. Industrial and Engineering ChemistryResearch, 2003, 42(24):6236-6249.
    [113] NASR-EL-DIN H A, MASLIYAH J H, MACTAGGART R S.Local solids concentration measurement in a slurry mixing tank[J].Chemical Engineering Science, 1996, 51(8):1209-1220.
    [114] ANGLE C W. Effects of sand fraction on toluene-diluted heavy oilin water emulsions in turbulent flow[J]. The Canadian Journal ofChemical Engineering, 2004, 82(4):722-734.
    [115] GREAVES M, KOBBACY KAH. Measurement of bubble sizedistribution in turbulent gas-liquid dispersions[J]. Transactions ofthe Institution of Chemical Engineers, 1984, 62:3-12.
    [116] BARIGOU M, GREAVES M. A capillary suction probe for bubblesize measurement[J]. Measurement Science and Technology, 1991,2:318-326.
    [117] BARIGOU M, GREAVES M. Bubble size distributions in amechanically agitated gas-liquid contactor[J]. ChemicalEngineering Science, 1992, 47:2009-2025.
    [118] ALVES S S, MAIAA C I, VASCONCELOS J M T, et al. Bubblesize in aerated stirred tanks[J]. Chemical Engineering Journal,2002, 89:109-117.
    [119] Dynaflow,Inc.Bubblemeasurements[EB/OL].http://www.dynaflow-inc.com/newsletters/ABSnewsletter.html.
    [120] WU X J, CHAHINE G L. Development of an acoustic instrumentfor bubble size distribution measurement[J]. J Hydrodyn., Ser. B,2010, 22(5):330-336
    [121] CODY G D, GOLDFARB D J, JR G V S, et al. Particle granulartemperature in gas fluidized beds[J]. Powder Technology, 1996, 87(3):211-232.
    [122] BOYD J W R, VARLEY J. The uses of passive measurement ofacoustic emissions from chemical engineering processes[J].Chemical Engineering Science, 2001, 56(5):1749-1767.
    [123]黄正梁,王靖岱,阳永荣.声波的多尺度分解与搅拌釜中浆液浓度的测量[J].化工学报, 2006, 57(9):2062-2067.HUANG Z L, WANG J D, YANG Y R. Measurement of slurry concentration in stirred vessel based on AE measurement bywavelet transform[J]. Journal of Chemical Industry andEngineering(China), 2006, 57(9):2062-2067.
    [124] WANG J D, REN C J, YANG Y R, et al. Characterization ofparticle fluidization pattern in a gas solid fluidized bed based onacoustic emission(AE)measurement[J]. Industrial&EngineeringChemistry Research, 2009, 48(18):8508-8514.
    [125] WANG J D, REN C J, YANG Y R. Characterization of flow regimetransition and particle motion using acoustic emissionmeasurement in a gas-solid fluidized bed[J]. AIChE Journal,2010, 56(5):1173-1183.
    [126] REN C J, WANG J D, SONG D, et al. Determination of particlesize distribution by multi-scale analysis of acoustic emissionsignals in gas-solid fluidized bed[J]. Journal of ZhejiangUniversity—Science A, 2011, 12(4):260-267.
    [127] BOOK G, ALBION K, BRIENS L, et al. On-line detection of bedfluidity in gas-solid fluidized beds with liquid injection by passiveacoustic and vibrometric methods[J]. Powder Technology, 2011,205(1/2/3):126-136.
    [128] LIU J T, WANG W, CHU N, et al. Numerical simulations andexperimental validation on passive acoustic emissions duringbubble formation[J]. Applied Acoustics, 2018, 130:34-42.
    [129] WU H, PATTERSON G K. Laser-doppler measurements ofturbulent-flow parameters in a stirred mixer[J]. ChemicalEngineering Science, 1989, 44(10):2207-2221.
    [130] WANG W J, MAO Z S, YANG C. Experimental and numericalinvestigation on gas holdup and flooding in an aerated stirred tankwith Rushton impeller[J]. Industrial and Engineering ChemistryResearch, 2006, 45(3):1141-1151.
    [131] VAN ENGELANDT G, DE WILDE J, HEYNDERICKX G J, et al.Experimental study of inlet phenomena of 35 degrees inclinednon-aerated and aerated Y-inlets in a dilute cold-flow riser[J].Chemical Engineering Science, 2007, 62(1/2):339-355.
    [132] KOHNEN C, BOHNET M. Measurement and simulation of fluidflow in agitated solid/liquid suspensions[J]. Chemical Engineeringand Technology, 2001, 24:639-643.
    [133] VIRDUNG T, RASMUSON A. Measurements of continuous phasevelocities in solid-liquid flow at elevated concentrations in astirred vessel using LDV[J]. Chemical Engineering Research andDesign, 2007, 85(2):193-200.
    [134] DEEN N G, SOLBERG T, HJERTAGER B H. Flow generated byan aerated Rushton impeller:two-phase PIV experiments andnumerical simulations[J]. The Canadian Journal of ChemicalEngineering, 2002, 80(4):638-652.
    [135] TAMBURINI A, CIPOLLINA A, MICALE G, et al. CFDsimulations of dense solid-liquid suspensions in baffled stirredtanks:prediction of suspension curves[J]. Chemical EngineeringJournal, 2011, 178:324-341.
    [136] RAFFEL M, WILLERT C, KOMPENHANS J, et al. Particle imagevelocimetry:a practical guide[M]. 3rd ed. Berlin:Springer,2018:8.
    [137]王希麟,张大力,常辙,等.两相流场粒子成像测速技术(PTV-PIV)初探[J].力学学报, 1998, 30(1):121-125.WANG X L, ZHANG D L, CHANG Z, et al. Preliminaryinvestigation of particle image velocimetry(PTV-PIV)techniquein two-phase flow[J]. Acta Mechanica Sinica, 1998, 30(1):121-125.
    [138] MONTANTE G, OCCULTI M H, MAGELLI F, et al. PIVmeasurements of mean flow and turbulence modulation in dilutesolid-liquid stirred tanks[C]//15th Int. Symp. on Appl. of LaserTechniques to Fluid Mechanics, Lisbon, Portugal. 2010.
    [139]杨斌,高凯,淡勇,等.化工搅拌釜内流动测量技术的应用进展[J].化工进展, 2012, 31(11):2364-2372, 2399.YANG B, GAO K, DAN Y, et al. Development of the flowmeasurement techniques used in the experimental study of thechemical stirred tank[J]. Chemical Industry and EngineeringProgress, 2012, 31(11):2364-2372, 2399.
    [140] MONTANTE G, PAGLIANTI A, MAGELLI F. Analysis of dilutesolid-liquid suspensions in turbulent stirred tanks[J]. ChemicalEngineering Research and Design, 2012, 90:1448-1456.
    [141] LI G H, GAO Z M, LI Z P, et al. Particle-resolved PIVexperiments of solid-liquid mixing in a turbulent stirred tank[J].AIChE Journal, 2018, 64(1):389-402.
    [142] DEVANATHAN N, MOSLEMIAN D, DUDUKOVIC M P. Flowmapping in bubble columns using CARPT[J]. ChemicalEngineering Science, 1990, 45(8):2285-2291.
    [143] RAMMOHAN A R, KEMOUN A, AL-DAHHAN M H, et al.Characterization of single phase flows in stirred tanks viacomputer automated radioactive particle tracking(CARPT)[J].Chemical Engineering Research and Design, 2001, 79(A8):831-844.
    [144] VESVIKAR M S, AL-DAHHAN M. Hydrodynamics investigationof laboratory-scale internal gas-lift loop anaerobic digester usingnon-invasive CAPRT technique[J]. Biomass and Bioenergy, 2016,84:98-106.
    [145] GUIDA A, NIENOW A W, BARIGOU M. Mixing of dense binarysuspensions:multi-component hydrodynamics and spatial phasedistribution by PEPT[J]. AIChE Journal, 2011, 57(9):2302-2315.
    [146] WAHAB Y A, RAHIM R A, RAHIMAN MHF, et al. Non-invasive process tomography in chemical mixtures—A review[J].Sensors and Actuators B:Chemical, 2015, 210:602-617.
    [147] YANG W Q, BECK M S, BYARS M M. Electrical capacitancetomography—From design to applications[J]. Measurement andControl, 1995, 28(9):261-266.
    [148] DYAKOWSKI T, EDWARDS R B, XIE C G, et al. Application ofcapacitance tomography to gas-solid flows[J]. ChemicalEngineering Science, 1997, 52(13):2099-2110.
    [149]薛倩.基于γ-CT/ECT的多相管流可视化测量[D].天津:天津大学, 2012.XUE Q. Visualized measurement of multiphase pipe flow usingγ-CT/ECT[D]. Tianjin:Tianjin University, 2012.
    [150] MANN R, WANG M, FORREST A E, et al. Gas-liquid andmiscible liquid mixing in a plant-scale vessel monitored usingelectrical resistance tomography[J]. Chemical EngineeringCommunications, 1999, 175:39-48.
    [151] WANG M, DORWARD A, VLAEV D, et al. Measurements of gas-liquid mixing in a stirred vessel using electrical resistancetomography[J]. Chemical Engineering Journal, 2000, 77:93-98.
    [152] HUI L K, BENNINGTON C P J, DUMONT G A. Cavern formationin pulp suspensions using side entering axial-flow impellers[J].Chemical Engineering Science, 2009, 64:509-519.
    [153] HAMIDIPOUR M, LARACHI F. Dynamics of filtration inmonolith reactors using electrical capacitance tomography[J].Chemical Engineering Science, 2010, 65:504-510.
    [154] WARSITO W, FAN L S. Neural network based multi-criterionoptimization image reconstruction technique for imaging two-andthree-phase flow systems using electrical capacitance tomography[J]. Measurement Science and Technology, 2001, 12(12):2198-2210.
    [155] WARSITO W, FAN L S. Dynamics of spiral bubble plume motionin the entrance region of bubble columns and three-phasefluidized beds using 3DECT[J]. Chemical Engineering Science,2005, 60:6073-6084.
    [156] CHAOUKI J, LARACHI F, DUDUKOVIC M P. Noninvasivetomography and velocimetric monitoring of multiphase flows[J].Industrial and Engineering Chemistry Research, 1997, 36:4476-4503.
    [157] JASON J F, THEODORE J H, TERRENCE C J, et al. X-raycomputed tomography of a gas-sparged stirred-tank reactor[J].Chemical Engineering Science, 2008, 63(8):2075-2085.
    [158] BIEBERLE M, FISCHER F, SCHLEICHER E, et al.Experimental two-phase flow measurement using ultra fastlimited-angle-type electron beam X-ray computed tomography[J].Experiments in Fluids, 2009, 47(3):369-378.
    [159] BODEN S, BIEBERLE M, HAMPEL U. Quantitativemeasurement of gas hold-up distribution in a stirred chemicalreactor using X-ray cone-beam computed tomography[J].Chemical Engineering Journal, 2008, 139(2):351-362.
    [160] FORD J J, HEINDEL T J, JENSEN T C, et al. X-ray computedtomography of a gas-sparged stirred-tank reactor[J]. ChemicalEngineering Science, 2008, 63(8):2075-2085.
    [161] HEINDEL T J, GRAY J N, JENSEN T C. An X-ray system forvisualizing fluid flows[J]. Flow Measurement and Instrumentation,2008, 19(2):67-78.
    [162] THATTE A R, GHADGE R S, PATWARDHAN A W, et al. Localgas holdup measurement in sparged and aerated tanks byγ-rayattenuation technique[J]. Industrial and Engineering ChemistryResearch, 2004, 43(17):5389-5399.
    [163] KHOPKAR A R, RAMMOHAN A R, RANADE V V, et al. Gas-liquid flow generated by a Rushton turbine in stirred vessel:CARPT/CT measurements and CFD simulations[J]. ChemicalEngineering Science, 2005, 60(8):2215-2229.
    [164] JEREMY L H, ALEX C S, THEODORE J H, et al. X-raycomputed tomography in large bubble columns[J]. ChemicalEngineering Science, 2005, 60(22):6124-6133.
    [165] HAMPEL U, HRISTOV H V, BIEBERLE A, et al. Application ofhigh-resolution gamma ray tomography to the measurement of gashold-up distributions in a stirred chemical reactor[J]. FlowMeasurement and Instrumentation, 2007, 18(5):184-190.
    [166] PARUL T, VIVEK V B. Experimental characterization of densegas-liquid flow in a bubble column using voidage probes[J].Chemical Engineering Journal, 2017, 308:912-928.
    [167] DOMINIC P, VALOIS P, CONNOR F, et al. Particleagglomeration in gas-liquid-solid fluidized beds with a dispersedimmiscible liquid:study on particle size, shape and material[J].Powder Technology, 2014, 266:45-60.
    [168] BESAGNI G, INZOLI F. Bubble size distributions and shapes inannular gap bubble column[J]. Experimental Thermal and FluidScience, 2016, 74:27-48.
    [169] GOMEZ C, FINCH J. Gas dispersion measurements in flotationcells[J]. International Journal of Mineral Processing, 2007, 84:51-58.
    [170] VAZIRIZADEH A, BOUCHARD J, CHEN Y. Effect of particleson bubble size distribution and gas hold-up in column flotation[J].International Journal of Mineral Processing, 2016, 157:163-173.
    [171] AMINI E, BRADSHAW D, FINCH J, et al. Influence ofturbulence kinetic energy on bubble size in different scaleflotation cells[J]. Minerals Engineering, 2013, 45:146-150.
    [172] MALDONADO M, DESBIENS A, POULINé, et al. Automaticcontrol of bubble size in a laboratory flotation column[J].International Journal of Mineral Processing, 2015, 141:27-33.
    [173] LI X Y, LI P P, ZU L Z, et al. Gas-liquid mass transfercharacteristics with microbubble aeration—I. Standard stirred tank[J]. Chemical Engineering&Technology, 2016, 39(5):945-952.
    [174]陈方圆,李平平,李向阳,等.侵入式光纤照相法测量气泡尺寸分布[J].过程工程学报, 2016, 16(3):361-366.CHEN F Y, LI P P, LI X Y, et al. An immerged fibre-opticphotoimaging method for measurement of bubble size[J]. TheChinese Journal of Process Engineering, 2016, 16(3):361-366.
    [175] HONKANEN M, ELORANTA H, SAARENRINNE P. Digitalimaging measurement of dense multiphase flows in industrialprocesses[J]. Flow Measurement and Instrumentation, 2010, 21(1):25-32.
    [176] HARTGE E U, RENSNER D, WERTHER J. Circulating fluidizedbed technology II[M]. Oxford:Pergamon Press, 1988.
    [177] JOHNSSON H, JOHNSSON F. Measurements of local solidsvolume-fraction in fluidized bed boilers[J]. Powder Technology,2001, 115:13-26.
    [178]秦邵宗,李国征.运动颗粒图象分析系统的研究[J].化学反应工程与工艺, 1990, 6(2):58-63.QIN S Z, LI G Z. Study on image analysis system for movingparticles[J]. Chemical Reaction Engineering and Technology,1990, 6(2):58-63.
    [179] Nanjing Chunhui Science and Technology Industrial Co., Ltd.Quartz beam and optical cable[EB/OL]. http://www.china-light-guides.com/products_detail/productId=68.html.
    [180] Mettler Toledo. Real-time microscopy for crystals, particlesand droplets[EB/OL]. http://www. mt. com/us/en/home/products/L1_AutochemProducts/FBRM-PVM-Particle-System-Characterization/PVM.html.
    [181] SOPAT GmbH. Smart online particle analysis technology[EB/OL].https://sopat.de/en/.
    [182] Pixact Ltd.Solutions[EB/OL]. http://www.pixact.fi/solutions.html.
    [183]杨超,李向阳,杨士芳,等.一种浸入式在线多相测量仪及测量方法:CN201610245332.5[P]. 2016.YANG C, LI X Y, YANG S F, et al. An immersive on-linemultiphase measuring instrument and its measuring method:CN201610245332.5[P]. 2016.
    [184] XIAO Y T, LI X Y, YANG C, et al. Particle scatteringphotography approach for dim multiphase reactors I:Theoreticalmodel and simulation[J]. Industrial and Engineering ChemistryResearch, 2018, 57(25):8396-8404.
    [185] PANCKOW R P, REINECKE L, CUELLAR M C, et al. Photo-optical in-situ measurement of drop size distributions:applications in research and industry[J]. Oil&Gas Science andTechnology:Revue IFP Energies Nouvelles, 2017,72(3):14-30.
    [186] XIAO Y T, LI X Y, YANG C, et al. Particle scatteringphotography approach for poorly-illuminated multiphase reactors.II:Experimental validation and optimization[J]. Industrial andEngineering Chemistry Research, 2018, 57(25):8405-8412.
    [187]王冠琦.基于远心照相的新型照相探头及用于多相搅拌槽测量[D].北京:中国科学院大学, 2017.WANG G Q. New vision probe based on telecentric photographyand its demonstrative applications in a multiphase stirred reactor[D].Beijing:University of Chinese Academy of Sciences, 2017.
    [188] OVERBY D R, JOHNSON M. Studies on depth-of-field effects inmicroscopy supported by numerical simulations[J]. Journal ofMicroscopy, 2005, 220:176-189.
    [189] Baidu Co., Ltd. Telecentric[EB/OL]. https://baike. baidu. com/item/%E8%BF%9C%E5%BF%83%E9%95%9C%E5%A4%B4/667556?fr=aladdin.
    [190] HAN M, SHA Z L, LAARI A, et al. CFD-PBM coupled simulationof an airlift reactor with non-newtonian fluid[J]. Oil&GasScience and Technology:Revue IFP Energies Nouvelles, 2017,72:26.
    [191] BESAGNI G, BRAZZALE P, FIOCCA A, et al. Estimation ofbubble size distributions and shapes in two-phase bubble columnusing image analysis and optical probes[J]. Flow Measurement andInstrumentation, 2016, 52:190-207.
    [192] RZEHAK R, KRAU?M, KOVáTS P, et al. Fluid dynamics in abubble column:new experiments and simulations[J]. InternationalJournal of Multiphase Flow, 2017, 89:299-312.
    [193] DUDA R O, HART P E. Using the Hough transform to detect linesand curves in pictures[J]. Communications of the ACM, 1972, 15:11-15.
    [194] KYRKI V, K?LVI?INEN H. Combination of local and global lineextraction[J]. Journal of Real-Time Imaging JRTI, 2000, 6(2):79-91.
    [195] STROKINA N, MATAS J, EEROLA T, et al. Detection of bubblesas concentric circular arrangements[C]//Pattern Recognition(ICPR), 2012 21st International Conference on. IEEE, 2012:2655-2659.
    [196] ILONEN J, EEROLA T, MUTIKAINEN H, et al. Estimation ofbubble size distribution based on power spectrum[C]//Iberoamerican Congress on Pattern Recognition. Springer, Cham,2014:38-45.
    [197] MALITSON I H. Interspecimen comparison of the refractive indexof fused silica[J]. Journal of the Optical Society of America, 1965,55:1205-1208.
    [198]杨超,李向阳,王冠琦,等.一种多相体系中颗粒浓度和粒径的在线测量方法:CN201610245330.6[P]. 2016.YANG C, LI X Y, WANG G Q, et al. An on-line measurementmethod for particle concentration and particle size in multiphasesystem:CN 201610245330.6[P]. 2016.
    [199]马斌.取样法测三相搅拌槽局部相含率及气液传质的研究[D].北京:中国矿业大学, 2016.MA B. Study on sampling method for measuring local phaseholdup and gas-liquid mass transfer in three-phase stirred tank[D]. Beijing:China University of Mining and Technology, 2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700