用户名: 密码: 验证码:
马来酸酐/二乙烯基苯接枝聚乳酸对微晶纤维素/聚乳酸复合材料性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of divinylbenzene-assisted maleic anhydride grafted poly(lactic acid) on properties of microcrystalline cellulose/poly(lactic acid) composites
  • 作者:王发扬 ; 杜军 ; 代璐 ; 吴海超 ; 王友勇 ; 宋永明
  • 英文作者:WANG Fayang;DU Jun;DAI Lu;WU Haichao;WANG Youyong;SONG Yongming;Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University;
  • 关键词:聚乳酸 ; 复合材料 ; 二乙烯基苯 ; 流变学 ; 界面
  • 英文关键词:polylactic acid;;composites;;divinylbenzene;;rheology;;interface
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:东北林业大学生物质材料科学与技术教育部重点实验室;
  • 出版日期:2018-10-23 16:14
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:中央高校基本科研业务费专项资金项目(2572017PZ01);; 国家自然科学基金青年项目(31100425);; 林业科学技术推广项目([2016] 32)
  • 语种:中文;
  • 页:HGSZ201901037
  • 页数:9
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:337-345
摘要
研究了马来酸酐(MAH)/二乙烯基苯(DVB)接枝聚乳酸(PLA-g-DVB/MAH)对微晶纤维素(MCC)/聚乳酸(PLA)复合材料性能的影响。首先采用熔融接枝法,将DVB作为MAH的共聚单体接枝到PLA分子链上制备PLA-g-DVB/MAH接枝聚合物,然后以PLA-g-DVB/MAH为相容剂,采用注射成型法制备MCC/PLA复合材料。利用FTIR对PLA-g-DVB/MAH进行表征,探究了PLA-g-DVB/MAH对MCC/PLA复合材料流变及力学性能的影响。结果表明,MAH成功接枝到PLA上,并得到接枝聚合物PLA-g-DVB/MAH;添加PLA-g-DVB/MAH后,MCC/PLA复合材料的储能模量、复数黏度、平衡扭矩以及剪切热都有明显升高;PLA-g-DVB/MAH的添加有利于改善MCC和PLA的界面相容性,进而提高了MCC/PLA复合材料的力学性能。
        The effect of maleic anhydride(MAH)/divinylbenzene(DVB) grafted polylactic acid(PLA-g-DVB/MAH) on the properties of microcrystalline cellulose(MCC)/polylactic acid(PLA) composites was investigated. PLAg-DVB/MAH graft polymer was synthesized by free-radical melt grafting using divinylbenzene(DVB) as acomonomer. MCC/PLA composites were prepared by injection molding using PLA-g-DVB/MAH as acompatibilizer. The molecular structure of PLA-g-St/MAH was characterized by FTIR and the influence of PLA-gDVB/MAH on the rheological and mechanical properties of the MCC/PLA composites was also investigated. Theresults showed that MAH was grafted onto PLA and the graft copolymer of PLA-g-DVB/MAH was obtainedsuccessfully. Storage modulus, complex viscosity, equilibrium torque and shear heat increased with the addition ofPLA-g-DVB/MA; The interfacial compatibility and the mechanical properties of MCC/PLA composites were significantly improved using PLA-g-DVB/MAH as a compatibilizer.
引文
[1] Lim L T, Auras R, Rubino M. Processing technologies for poly(lactic acid)[J]. Progress of Polymer Science, 2008, 33(8):820-825.
    [2] Tsutsumi N, Kono Y, Oya M, et al. Recent development of biodegradable network polyesters obtained from renewable natural resources[J]. Clean Soil Air Water, 2008, 36(8):682-686.
    [3] Chienb B W, Ibrahim N A, Wan M Z W Y, et al. Plasticized poly(lactic acid)with low molecular weight poly(ethylene glycol):mechanical, thermal, and morphology properties[J]. Journal of Applied Polymer Science, 2013, 130(6):4576-4580.
    [4] Bhattacharyya S K, Parmar B S, Chakraborty A, et al. Exploring microcrystalline cellulose(MCC)as a green multifunctional additive(MFA)in a typical solution-grade styrene butadiene rubber(S-SBR)-based tread compound[J]. Industrial&Engineering Chemistry Research, 2012, 51(32):10649-10658.
    [5] Bai W, Li K. Partial replacement of silica with microcrystalline cellulose in rubber composites[J]. Composites Part A Applied Science&Manufacturing, 2009, 40(10):1597-1605.
    [6]冯彦洪,李展洪,瞿金平,等.聚乳酸/剑麻复合材料流变性能表征[J].化工学报, 2011, 62(1):269-275.Feng Y H, Li Z H, Qu J P, et al. Characterization of rheological properties of polylactic acid/sisal fiber composites[J]. CIESC Journal, 2011, 62(1):269-275.
    [7]袁彩霞,罗卫华,袁光明,等.增容纳米纤维素/聚乳酸复合材料的制备与性能[J].复合材料学报, 2016, 33(12):2718-2724.Yuan C X, Luo W H, Yuan G M, et al. Preparation and properties of compatibilized cellulose nanocrystal/poly(lactic acid)composites[J]. AMCS Journal, 2016, 33(12):2718-2724.
    [8] Zhang H. Effect of a novel coupling agent, alkyl ketene dimer, on the mechanical properties of wood-plastic composites[J].Materials&Design, 2014, 59(1):130-134.
    [9] Islam M S, Pickering K L, Foreman N J. Influence of alkali treatment on the interfacial and physic mechanical properties of industrial hemp fiber reinforced polylactic acid composites[J].Composites Part A Applied Science&Manufacturing, 2010, 41(5):596-603.
    [10] Lv S, Tan H, Gu J, et al. Silane modified wood flour blended with poly(lactic acid)and its effects on composite performance[J]. BioResources, 2015, 10(3):5426-5439。
    [11] Huda M S, Drzal L T, Mohanty A K, et al. Effect of fiber surfacetreatments on the proper-ties of laminated bio-composites from poly(lactic acid)(PLA)and kenaf fibers[J]. Composites Science&Technology, 2008, 68(2):424-432.
    [12] Qin L, Qiu J, Liu M, et al. Mechanical and thermal properties of poly(lactic acid)composites with rice straw fiber modified by poly(butyl acrylate)[J]. Chemical Engineering Journal, 2011, 166(2):772-778.
    [13] Tingaut P, Zimmermann T, Lopezsuevos F. Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid)and acetylated microfibrillated cellulose[J].Bio-macromolecules, 2010, 11(2):454-64.
    [14]龚新怀,辛梅华,李明春,等.增容剂改善茶粉/聚乳酸生物质复合材料性能[J].农业工程学报, 2017, 33(2):308-314.Gong X H, Xin M H, Li M C, et al. Compatibilizer improving properties of tea dust/polylactic acid biomass composites[J].Transactions of the Chinese Society of Agricultural Engineering,2017, 33(2):308-314.
    [15] Hwang S W, Shim J K, Selke S, et al. Effect of maleic-anhydride grafting on the physical and mechanical properties of poly(Llactic acid)/starch blends[J]. Macromolecular Materials&Engineering, 2013, 298(6):624-633.
    [16] Detyothin S, Selke S E M, Narayan R, et al. Effects of molecular weight and grafted maleic anhydride of functionalized polylactic acid used in reactive compatibilized binary and ternary blends of polylactic acid and thermoplastic cassava starch[J]. Journal of Applied Polymer Science, 2015, 132(28).
    [17] Chow W S, Tham W L, Seow P C. Effects of maleated-PLA compatibilizer on the properties of poly(lactic acid)/halloysite clay composites[J]. Journal of Thermoplastic Composite Materials,2013, 26(10):1349-1363.
    [18] Nyambo C, Mohanty A K, Misra M. Effect of maleated compatibilizer on performance of PLA/Wheat straw-based green composites[J]. Macromolecular Materials&Engineering, 2011,296(8):710-718.
    [19] Gregorova A, Hrabalova M, Wimmer R, et al. Poly(lactide acid)composites reinforced with fibers obtained from different tissue types of picea sitchensis[J]. Journal of Applied Polymer Science,2009, 114(5):2616-2623
    [20] Ma P, Jiang L, Ye T, et al. Melt free-radical grafting of maleic anhydride onto biodegradable poly(lactic acid)by using styrene as a comonomer[J]. Polymers, 2014, 6(5):1528-1543.
    [21]许巍.马来酸酐/二乙烯基苯官能团化改性聚丁烯-1的研究[D].青岛:青岛科技大学, 2016.Xu W. Study on the maleic anhydride/divinglbenzene functional modified is tactic polybatene-1[D]. Qingdao:Qingdao University of Science, 2016.
    [22] Du J, Wang Y, Xie X, et al. Styrene-assisted maleic anhydride grafted poly(lactic acid)as an effective compatibilizer for wood flour/poly(lactic acid)bio-composites[J]. Polymers, 2017, 9(11):623.
    [23] Wu C S. Renewable resource-based composites of recycled natural fibers and maleated poly-lactide bio-plastic:characterization and biodegradability[J]. Polymer Degradation&Stability, 2009, 94(7):1076-1084.
    [24] Yu T, Jiang N, Li Y. Study on short ramie fiber/poly(lactic acid)composites compatibilized by maleic anhydride[J]. Composites Part A:Applied Science and Manufacturing, 2014, 64(6):139-146.
    [25]许会平,彭奇均.聚丙烯酸甲酯二乙烯苯交联度的红外光谱研究[J].光谱实验室, 2007, 24(6):1145-114.Xu H P, Peng Q J. Study on IR for char acter ization of cross linkage of poly(methacrylate-divinylbenzene)[J]. Spectrum Laboratory, 2007, 24(6):1145-114.
    [26] Ma P, Cai X, Lou X, et al. Styrene-assisted melt free-radical grafting of maleic anhydride onto poly(β-hydroxybutyrate)[J].Polymer Degradation and Stability, 2014, 100:93-100.
    [27]谢续明,陈年欢,李松.聚丙烯熔融接枝中共单体的作用机理[J].高分子学报, 1999, 1(3):351-354.Xie X M, Chen H N, Li S. The effect of commoner in the meltgrafting PP system[J]. Acta Polymerica Sinica, 1998, 1(3):351-354.
    [28] Hwang S W, Sang B L, Chang K L, et al. Grafting of maleic anhydride on poly(L-lactic acid). Effects on physical and mechanical properties[J]. Polymer Testing, 2012, 31(2):333-344.
    [29] Al M S, Eddiyanto E. Reactive processing of polymers:effect of bifunctional and tri-functional comonomers on melt grafting of glycidyl methacrylate onto polypropylene[J]. Polymer Degradation&Stability, 2010, 95(3):353-362.
    [30] Hristov V, Vlachopoulos J. Influence of coupling agents on melt flow behavior of natural fiber composites[J]. Macromolecular Materials and Engineering, 2007, 292(5):608-619.
    [31] Li T Q, Wolcott M P. Rheology of wood plastics melt, part 2:Effects of lubricating systems in HDPE/maple composites[J].Polymer Engineering&Science, 2006, 46(4):464-473.
    [32] Sojoudiasli H, Heuzey M C, Carreau P J. Rheological,morphological and mechanical properties of flax fiber polypropylene composites:influence of compatibilizers[J].Cellulose, 2014, 21(5):3797-3812.
    [33] Mohanty S, Nayak S K. Interfacial, dynamic mechanical, and thermal fiber reinforced behavior of MAPE treated sisal fiber reinforced HDPE composites[J]. Journal of Applied Polymer Science, 2006, 102(4):3306-3315.
    [34] Zhu R, Liu H, Zhang J. Compatibilizing effects of maleated poly(lactic acid)(PLA)on properties of PLA/Soy protein composites[J].Industrial&Engineering Chemistry Research, 2012, 51(22):7786-7792.
    [35]欧荣贤,王清文.马来松香对木粉/HDPE复合材料流变性质的影响[J].林业科学, 2009, 45(5):000126-131.Ou R X, Wang Q W. Effects of maleic rosin on the rheological properties of wood flour HDPE composites[J]. Scientia Silvae Sinica, 2009, 45(5):000126-123.
    [36] Gao H, Xie Y, Ou R, et al. Grafting effects of polypropylene/polyethylene blends with maleic anhydride on the properties of the resulting wood-plastic composites[J]. Composites Part A Applied Science&Manufacturing, 2012, 43(1):150-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700