用户名: 密码: 验证码:
集成NGL回收的新型天然气液化系统AP-X~(TM)的概念设计与模拟分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Conceptual design, simulation and analysis of novel AP-X~(TM) system integrated with NGL recovery process for large-scale LNG plant
  • 作者:王少靖 ; 刘琳琳 ; 张磊 ; 都健 ; 吴恺艺
  • 英文作者:WANG Shaojing;LIU Linlin;ZHANG Lei;DU Jian;WU Kaiyi;Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology;
  • 关键词:液化 ; 制冷循环 ; 烷烃 ; 优化设计 ; 模拟
  • 英文关键词:liquefaction;;refrigeration cycle;;alkane;;optimal design;;simulation
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:大连理工大学化工学院化工系统工程研究所;
  • 出版日期:2018-12-04 17:27
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:中央高校基本科研业务费专项资金(DUT18LAB11);; 国家自然科学基金项目(21576036,21406026)
  • 语种:中文;
  • 页:HGSZ201902011
  • 页数:8
  • CN:02
  • ISSN:11-1946/TQ
  • 分类号:88-95
摘要
为提高液化天然气能量集成与设备共用水平,提出了一种基于大型AP-X~(TM)液化流程,综合气体过冷技术(GSP)的集成NGL (天然气凝液)回收工艺的天然气液化系统的概念设计。基于化工流程模拟软件AspenHYSYS进行模拟和分析,将集成工艺多流股换热器性能、全流程的单位功耗和乙烷回收率作为衡量系统性能的三项指标。模拟和分析的结果表明,集成NGL回收的AP-X~(TM)液化工艺单位功耗降低至0.45 kW·h·(kgLNG)-1,较单产系统能耗降低了6%,同时乙烷回收率达到93%,实现了NGL的高效分离。通过热力学分析、?分析和经济性分析得出本设计流程具有较高的性能和经济价值,可为天然气液化工艺的集成设计和技术改造提供指导借鉴。
        To improve the energy integration and equipment sharing level of LNG, a conceptual design of natural gas liquefaction system based on large-scale AP-X~(TM)liquefaction process and integrated gas subcooling technology(GSP) integrated natural gas condensate(NGL) recovery process was proposed. The performance of the multi-stream heat exchanger, the unit power consumption and the recovery rate of ethane were considered as the three ofbasic characteristics to evaluate process performance. The simulation and analysis results show that the unit powerconsumption of proposed process is reduced to 0.45 kW ·h·(kg LNG)-1which is reduced by 6% compared withconventional independent process. Furthermore, recovery rate of ethane is 93% which prove that NGL.s efficientseparation is achieved. The thermodynamic analysis, exergy analysis and economic analysis prove that the proposedconfiguration has high thermodynamics performance and economic value. This study can provide guidance for natural gas engineering research and retrofitted design of natural gas liquefaction technology.
引文
[1]吴勇军,陈洋洋.国际LNG市场分析及我国LNG产业发展建议[J].当代石油石化, 2014, 6(10):26-35.Wu Y J, Chen Y Y. Analysis of international LNG market and suggestions for China.s LNG industry development[J].Contemporary Petroleum&Petrochemicals, 2014, 6(10):26-35.
    [2] Johnson G L, Finn A J, Tomlinson T R. Offshore and smaller scale liquefiers[J]. LNG Journal, 1999, 2(5):19-22.
    [3] Chiu C H, Quillen L D, Gas C G. A new frontier offshore natural gas liquefaction[R]. Bangkok:Chevro Energy Technology Company and Chevron Global Gas, 2008.
    [4] He T B, Ju Y L. Performance improvement of nitrogen expansion liquefaction process for small-scale LNG plant[J]. Cryogenics,2014, 61(11):111-119.
    [5]顾安忠.液化天然气技术[M].北京:机械工业出版社, 2009:116-117.Gu A Z. LNG Technology[M]. Beijing:Mechanical Industry Press, 2009:116-117.
    [6]王乐,贾立民,付孟贵,等.天然气脱水系统的技术改造[J].天然气工业, 2005, 25(8):123-124.Wang L, Jia L M, Fu M G, et al. Technical transformation of natural gas dehydration system[J]. Natural Gas Industry, 2005, 25(8):123-124.
    [7] Lim W, Choi K, Moon I. Current status and perspectives of liquefied natural gas(LNG)plant design[J]. Ind. Eng. Chem.Res., 2012, 52(9):3065-3088.
    [8]邱鹏,杨家茂,邹凌川,等. GSP工艺回收天然气中C2+组分的模拟研究[J].工程技术, 2017, 15(8):1-3.Qiu P, Yang J M, Zou L C, et al. Study on the recovery of C2+components in natural gas by GSP process[J]. Engineering Technology, 2017, 15(8):1-3.
    [9]唐晓东,诸林,杨世,等.提高油气田轻烃回收率的途径探讨[J].石油与天然气化工, 1999, 28(4):272-276.Tang X D, Zhu L, Yang S, et al. Discussion on ways to improve the recovery rate of light hydrocarbons in oil and gas fields[J].Petroleum and Natural Gas Chemical Industry, 1999, 28(4):272-276.
    [10]钟水清.我国21世纪天然气商机研究及其展望[J].钻采工艺,2007, 30(5):93-98.Zhong S Q. China.s 21st century natural gas business research and its prospects[J]. Drilling and Production Technology, 2007, 30(5):93-98.
    [11] Ait-Ali M. Optimal mixed refrigerant liquefaction of natural gas[D]. California:Stanford University, 1979.
    [12] Mesfin G, Shuhaimi M, Nguyen V, et al. Techno-economic analysis of potential natural gas liquid(NGL)recovery processes under variations of feed compositions[J]. Chemical Engineering Research and Design, 2013, 91(7):1272-1283.
    [13] Brostow A, Roberts M. Integrated NGL recovery in the production of liquefied natural gas:US20130061632[P]. 2013-06-16.
    [14] Cuellar K T. Co-producing LNG from cryogenic NGL recovery plants[C]//81st Annual Convention of the Gas Processors Association. Beijing:2002.
    [15]贺天彪,巨永林.小型撬装式天然气液化流程模拟与分析[J].低温技术, 2013, 41(5):1001-7100.He T B, Ju Y L. Simulation and analysis of small-scale skidmounted natural gas liquefaction process[J]. Cryogenic Technology, 2013, 41(5):1001-7100
    [16] Hojat A, Mehdi M. Evaluation of novel process configurations for coproduction of LNG and NGL using advanced exergoeconomic analysis[J]. Applied Thermal Engineering, 2017, 115(13):885-898.
    [17]孙兰义.化工流程模拟实训——Aspen Plus教程[M].北京:化学工业出版社, 2012:163.Sun L Y. Chemical Process Simulation Training—Aspen Plus Course[M]. Beijing:Chemical Industry Press, 2012:163.
    [18]王坤.小型MRC天然气液化装置板翅换热器动态特性仿真研究[D].哈尔滨:哈尔滨工业大学, 2007.Wang K. Simulation study on dynamic characteristics of plate-fin heat exchanger for small MRC natural gas liquefaction plant[D].Harbin:Harbin Institute of Technology, 2007.
    [19]尹全森.混合制冷剂循环优化设计和动态特性研究[D].哈尔滨:哈尔滨工业大学, 2010.Yin Q S. Research on optimization design and dynamic characteristics of mixed refrigerant cycle[D]. Harbin:Harbin Institute of Technology, 2010.
    [20]李奇,姬忠礼,段西欢,等.基于HYSYS和GA的天然气净化装置用能优化[J].天然气工业, 2011, 31(9):102-106.Li Q, Ji Z L, Duan X H, et al. Energy optimization of natural gas purification equipment based on HYSYS and GA[J]. Natural Gas Industry, 2011, 31(9):102-106.
    [21] Du H P, Cui J S, Li H Y, et al. The simulation and optimization analyses of process based on natural gas liquefaction at sea[J].Energy Conversion Technology, 2011, 29(3):195-197.
    [22] Gao T, Lin W S, Liu W, et al. Mixed refrigerant cycle liquefaction process for coalbed methane with high nitrogen content[J]. Journal of the Energy Institute, 2011, 84(4):185-191.
    [23]唐迎春,陈保东,王凯,等. P-R方程在天然气热物性计算中的应用[J].石油化工高等学校学报, 2005, 18(2):47-50.Tang Y C, Chen B D, Wang K, et al. The application of P-R equation in the calculation of natural gas thermal properties[J].Journal of Petrochemical Universities, 2005, 18(2):47-50.
    [24] Mehrpooya M, Vatani A, Moosavian S, et al. Introducing a new parameter for evaluating the degree of integration in cryogenic liquid recovery processes[J]. Chem. Eng. Process, 2011, 50(15):916-930.
    [25] Michelsen F A, Halvorsen I J, Lund B F, et al. Modeling and simulation for control of the TEALARC liquified natural gas process[J]. Industrial&Engineering Chemistry Research, 2010,49(16):7389-7397.
    [26] Husnil Y A, Lee M. Control structure synthesis for operational optimization of mixed refrigerant processes for liquefied natural gas plant[J]. AIChE Journal, 2014, 60(7):2428-2441.
    [27] Husnil Y A, Yeo G C, Lee M. Plant-wide control for the economic operation of modified single mixed refrigerant process for an offshore natural gas liquefaction plant[J]. Chemical Engineering Research and Design, 2014, 92(4):679-691.
    [28]高婷.含氮煤层气二氧化碳净化指标与液化提纯流程研究[D].上海:上海交通大学, 2012.Gao T. Study on carbon dioxide purification index and liquefaction purification process of nitrogen-bearing coalbed methane[D]. Shanghai:Shanghai Jiao Tong University, 2012.
    [29]韩光泽,郭平生,李绍新,等.热力学?及其普遍化表达式的动力学特征[J].热能动力工程, 2007, 22(4):409-413.Han G Z, Guo P S, Li S X, et al. Kinetic characteristics of thermodynamics and its generalized expression[J]. Thermal Power Engineering, 2007, 22(4):409-413.
    [30]李亚芬.过程控制系统及仪表[M].大连:大连理工大学出版社, 2010:321.Li Y F. Process Control System and Instrument[M]. Dalian:Dalian University of Technology Press, 2010:321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700