用户名: 密码: 验证码:
固溶体MAX相(Ti_(0.5)V_(0.5))_3AlC_2的制备及其对MgH_2储氢性能的催化影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Catalytic Effects of Solid-Solution MAX-phase(Ti_(0.5)V_(0.5))_3AlC_2 on Hydrogen Storage Performance of MgH_2
  • 作者:张欣 ; 沈正阳 ; 简旎 ; 姚建华 ; 高明霞 ; 潘洪革 ; 刘永锋
  • 英文作者:ZHANG Xin;SHEN Zheng-Yang;JIAN Ni;YAO Jian-Hua;GAO Ming-Xia;PAN Hong-Ge;LIU Yong-Feng;Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Collaborative Innovation Center of High-end Laser Manufacturing Equipment;State Key Laboratory of Silicon Materials, School of Materials Science and Engineering,Zhejiang University;
  • 关键词:储氢材料 ; 金属氢化物 ; MgH2 ; 催化剂添加 ; 固溶体MAX相
  • 英文关键词:hydrogen storage materials;;metal hydride;;MgH2;;catalyst doping;;solid-solution MAX phase
  • 中文刊名:WJHX
  • 英文刊名:Chinese Journal of Inorganic Chemistry
  • 机构:浙江工业大学激光先进制造研究院浙江省高端激光制造装备协同创新中心;硅材料国家重点实验室浙江省电池新材料及应用技术重点实验室浙江大学材料科学与工程学院;
  • 出版日期:2019-01-10
  • 出版单位:无机化学学报
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金(No.51671172,U1601212);; 浙江省杰出青年科学基金(No.LR16E010002)资助项目
  • 语种:中文;
  • 页:WJHX201901012
  • 页数:8
  • CN:01
  • ISSN:32-1185/O6
  • 分类号:111-118
摘要
通过无压烧结法制备了固溶体MAX相(Ti_(0.5)V_(0.5))_3AlC_2,研究了其添加对MgH_2储氢性能的影响。结果发现,固溶体MAX相(Ti_(0.5)V_(0.5))_3AlC_2中的Ti和V元素通过协同作用,呈现出更高的催化活性。添加质量分数10%(Ti_(0.5)V_(0.5))_3AlC_2的MgH_2样品的起始放氢温度为230℃,较原始MgH_2降低了60℃。在275℃下等温放氢,(Ti_(0.5)V_(0.5))_3AlC_2添加样品的放氢速率可达0.35%·min~(-1),是原始MgH_2样品的4倍左右。此外,完全放氢后的MgH_2-10%(Ti_(0.5)V_(0.5))_3AlC_2样品在150℃、5 MPa氢压下,可在60 s内吸收4.7%的氢。计算显示,MgH_2-10%(Ti_(0.5)V_(0.5))_3AlC_2样品的表观活化能为79.6 kJ·mol~(-1),较原始MgH_2(153.8 kJ·mol~(-1))降低了48%,这是MgH_2放氢性能得到改善的主要原因。
        A solid-solution MAX phase(Ti_(0.5)V_(0.5))_3AlC_2 was successfully synthesized with a pressureless sintering method, and its catalytic effect on hydrogen storage reaction of MgH_2 was systematically investigated. The solid solution MAX phase(Ti_(0.5)V_(0.5))_3AlC_2 exhibited superior catalytic activity, thanks to the synergistic catalysis effect of Ti and V. The on-set dehydrogenation temperature of MgH_2-10%(Ti_(0.5)V_(0.5))_3AlC_2 samples was only 230 ℃(mass fraction of(Ti_(0.5)V_(0.5))_3AlC_2 was 10%), which was 60 ℃ lower than that of pristine MgH_2. The desorption rate of MgH_2-10%(Ti_(0.5)V_(0.5))_3AlC_2 sample at 217 ℃ was calculated to be 0.35%·min~(-1), which was 4 times faster than that of the pristine sample. At 150 ℃, the dehydrogenated MgH_2-10%(Ti_(0.5)V_(0.5))_3AlC_2 sample absorbs 4.7% of H_2 within60 s under 5 MPa H_2. The apparent activation energy of the MgH_2-10%(Ti_(0.5)V_(0.5))_3AlC_2 sample was determined to be 79.6 kJ·mol~(-1), representing a 48% reduction in the reaction barrier, compared with pristine MgH_2(153.8 kJ·mol~(-1)). This reasonably explains the significant improvement in dehydrogenation performance.
引文
[1]Chu S, Majumdar A. Nature, 2012,488(17):294-303
    [2]SHANGGUAN Wen-Feng(上官文峰). Chinese J. Inorg. Chem.(无机化学学报), 2001,17(9):619-626
    [3]Zhang X B, Chai Y J, Yin W Y, et al. J. Rare Earths, 2003,21(S1):162-164
    [4]ZHANG Xin-Bo(张新波), ZHAO Min-Shou(赵敏寿). Chem.J. Chinese Universities(高等学校化学学报), 2003,24(9):1680-1682
    [5]Zhang X B, Sun Z D, Yin W Y, et al. ChemPhysChem, 2005,6(3):520-525
    [6]Zhang X B, Sun Z D, Yin W Y, et al. Electrochim. Acta,2005,50(9):1957-1964
    [7]Zhang X B, Sun Z D, Yin W Y, et al. Electrochim. Acta,2005,50(14):2911-2918
    [8]QIAO Yu-Qing(乔玉卿), ZHAO Min-Shou(赵敏寿), ZHU Xin-Jian(朱新坚), et al. Journal of Functional Materials(功能材料), 2005,36(12):1875-1878
    [9]LIU Yang(刘洋), LI Yuan-Yuan(李媛媛), PENG Dan-Dan(彭丹丹), et al. Chinese J. Inorg. Chem.(无机化学学报),2017,33(12):1875-1878
    [10]Liu Y F, Yang Y X, Gao M X, et al. Chem. Rec., 2016,16(1):189-204
    [11]Crivello J C, Dam B, Denys R V, et al. Appl. Phys. A, 2016,122(2):97-117
    [12]Jain I P, Lal C. Int. J. Hydrogen Energy, 2010,35(10):5133-5144
    [13]Puszkiel J A, Riglos M V C, Ramallo-López J M, et al. J.Mater. Chem. A, 2017,5(25):12922-12933
    [14]Puszkiel J A, Larochette P A, Gennari F C. J. Power Sources,2009,186(1):185-193
    [15]Vajo J J. J. Phys. Chem. B, 2004,108(37):13977-13983
    [16]Xia G L, Tan Y, Chen X, et al. Adv. Mater., 2015,27(39):5981-5988
    [17]Peng D D, Ding Z M, Zhang L, et al. Int. J. Hydrogen Energy,2018,43(7):3731-3740
    [18]Au Y S, Obbink M K, Srinivasan S, et al. Adv. Funct. Mater.,2014,24(23):3604-3611
    [19]Rather S, Taimoor A A, Muhammad A, et al. Mater. Res.Bull., 2016,77:23-28
    [20]Xie X B, Chen M, Liu P, et al. J. Power Sources, 2017,371(15):112-118
    [21]Mustafa N S, Ismail M. J. Alloys Compd., 2017,695(25):2532-2538
    [22]Chakrabarti S, Biswas K. Int. J. Hydrogen Energy, 2017,42(2):1012-1017
    [23]Soni P K, Bhatnagar A, Shaz M A, et al. Int. J. Hydrogen Energy, 2017,42(31):20026-20035
    [24]Hanada N, Ichikawa T, Hino S, et al. J. Alloys Compd.,2006,420(1/2):46-49
    [25]Liang G, Huot J, Boily S, et al. J. Alloys Compd., 1999,292(1/2):247-252
    [26]Cui J, Wang H, Liu J W, et al. J. Mater. Chem. A, 2013,1(18):5603-5611
    [27]Wang Y, Zhang Q, Wang Y, et al. J. Alloys Compd., 2015,645(1):S509-S512
    [28]Liu Y F, Du H F, Zhang X, et al. Chem. Commun., 2016,52(4):705-708
    [29]Wang K, Du H, Wang Z, et al. Int. J. Hydrogen Energy,2017,42(7):4244-4251
    [30]Malka I E, Czujko T, Bystrzycki J. Int. J. Hydrogen Energy,2010,35(4):1706-1712
    [31]Oelerich W, Klassen T, Bormann R. J. Alloys Compd., 2001,315(1/2):237-242
    [32]Wang Z Y, Ren Z H, Jian N, et al. J. Mater. Chem. A, 2018,6(33):16177-16185
    [33]Jia Y, Cheng L N, Pan N, et al. Adv. Energy Mater., 2011,1(3):387-393
    [34]Naguib M, Bentzel G W, Shah J, et al. Mater. Res. Lett.,2014,2(3):233-240
    [35]Kissinger H E. Anal. Chem., 1957,29(11):1702-1706
    [36]Huot J, Liang G, Boily S, et al. J. Alloys Compd., 1999,293-295:495-500
    [37]Chen G, Zhang Y, Chen J, et al. Nanotechnology, 2018,29(26):265705

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700