用户名: 密码: 验证码:
橡胶减振系统的动力学冲击模拟和试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic impact simulation and experiment of rubber antivibration system
  • 作者:罗克奇
  • 英文作者:Robert Keqi Luo;Trelleborg Antivibration Solutions;School of Civil Engineering, Central South University;
  • 关键词:橡胶减振器 ; 动力冲击 ; 橡胶阻尼 ; 回弹能 ; 自然频率域
  • 英文关键词:rubber antivibration component;;dynamic impact;;rubber damping;;rebound resilience;;natural frequency region
  • 中文刊名:CSTD
  • 英文刊名:Journal of Railway Science and Engineering
  • 机构:Trelleborg Antivibration Solutions;中南大学土木工程学院;
  • 出版日期:2019-01-15
  • 出版单位:铁道科学与工程学报
  • 年:2019
  • 期:v.16;No.106
  • 语种:中文;
  • 页:CSTD201901026
  • 页数:8
  • CN:01
  • ISSN:43-1423/U
  • 分类号:198-205
摘要
橡胶减振装置在铁道运输系统中是必不可少的部件。基于将橡胶结构大变形和高阻尼特性考虑在内的自然频率域(NFR-Natural Frequency Region)方法,针对实际工业减振产品CUS单元在整个冲击过程中的动力响应测试,分别用2种模拟冲击质量体的有限元模型(点质量模型和实体模型)进行较详尽的分析,评估实体橡胶减振系统的时域冲击响应,所模拟的结果和测试数据吻合良好。可为有关工作提供参考,有助于更准确地模拟橡胶减振系统的动力响应,从而加快和优化设计过程。
        Rubber antivibration devices are an essential part of the railway transportation system. Based on the NFR(NFR-Natural Frequency Region) method that takes into account the large deformation and high damping characteristics of rubber structures, and in the reference of the experiment of the dynamic response on the actual industrial antivibration product CUS unit during the entire impact process, detailed analyses have been performed using two finite element models of the impact mass(point mass model and solid model). The impact response of the solid rubber antivibration system has been successfully evaluated in the time-domain. The simulated results are in good agreement with the experimental data. This article may provide a reference for the relevant work and help to more accurately simulate the dynamic response of the rubber antivibration system so that a design process can be accelerated and optimized.
引文
[1]Luo R K,Gabbitas B L,Brickle B V.An integrated dynamic simulation of metro vehicles in a real operating environment[J].Veh Syst Dyn,1994(23):334-345.
    [2]Berg M.A model for rubber springs in the dynamic analysis of rail vehicles[J].J Rail and Rapid Transit,1997(211):97-108.
    [3]Kari L.Audible-frequency stiffness of a primary suspension isolator on a high-speed tilting bogie[J].Rail and Rapid Transit,2003(217):47-62.
    [4]Jeon S.Roadbed bearing capacity and deformations in a conventional and an improved turnout system[J].J Rail and Rapid Transit,2016,230(1):97-102.
    [5]姜洪源,敖宏瑞,李瑰贤,等.金属橡胶隔振器动力学模型与分析[J].湖南科技大学学报(自然科学版),2004,19(3):23-27.JIANG Hongyuan,AO Hongrui,LI Guixian,et al.Modeling and analysis of dynamic characteristics of metal rubber isolator[J].Journal of Hunan University of Science and Technology(Natural Science Edition),2004,19(3):23-27.
    [6]邓吉宏,王轲,陈国平,等.金属橡胶减振器用于发动机安装减振的研究[J].航空学报,2008,29(6):1581-1585.DENG Jihong,WANG Ke,CHEN Guoping,et al.Study on effect of engine installation metal rubber damper[J].Journal of Aeronautics and Astronautics,2008,29(6):1581-1585.
    [7]潘开名,刘斌,刘之洋,等.叠层橡胶支座隔震结构地基-结构动力相互作用分析[J].东北大学学报(自然科学版),2002,23(1):71-74.PAN Kaiming,LIU Bin,LIU Zhiyang,et al.Laminated rubber bearing isolation structure foundation-structure[J].Journal of Northeastern University(Natural Science Edition),2002,23(1):71-74.
    [8]Grassie S L.Resilient rail pads their dynamic behaviour in the laboratory and on track[J].Proc Inst Mech Eng,2007(203):25-32.
    [9]Luo R K,Gabbitas B L,Brickle B V.Fatigue design in railway vehicle bogies based on dynamic simulation[J].Veh Syst Dyn,1996,25(Suppl):438-449.
    [10]Gil-Negrete N,Vinolas J,Kari L.Dynamic stiffness prediction of filled rubber mounts:comparison between a fractional derivative viscoelastic-elastoplastic model and a simplified procedure[C]//Austrell P-E,Kari L(Eds.),Constitutive Models for Rubber IV,A.A.Balkema,Rotterdam,The Netherlands,2005:479-485.
    [11]Oh J S,Kim D Y,Kim T H,et al.Numerical prediction of the viscoelastic deformation of seat foam in response to long-term driving[J].J Automobile Engineering,2015,229(2):214-225.
    [12]Na S D,Yoo W S.Improvement in the dynamic responses of the semi empirical vehicle model using the Maxwell force model for the suspension forces[J].J Automobile Engineering,2015,229(14):1996-2006.
    [13]Bruni S,Collina A.Modelling the viscoelastic behaviour of elastomeric components:An application to the simulation of train-track interaction[J].Veh Syst Dyn,2000,34(4):283-301.
    [14]Cervello S,Donzella G,Pola A,et al.Analysis and design of a low-noise railway wheel[J].J Rail and Rapid Transit,2001,215(3):179-192.
    [15]Busfield J J C,Deeprasertkul C,Thomas A G.Effect of liquids on the dynamic properties of carbon black filled natural rubber as a function of pre-strain[C]//Dorfmann A,Muhr A(Eds.),Constitutive Models for Rubber,A.A.Balkema,Rotterdam,The Netherlands,1999:87-93.
    [16]SHI H,WU P.A nonlinear rubber spring model containing fractional derivatives for use in railroad vehicle dynamic analysis[J].J Rail and Rapid Transit.2016,230(7):1745-1759.
    [17]Tarrago M J,Gil-Negrete N,Vinolas J.Viscoelastic models for rubber mounts:Influence on the dynamic behaviour of an elastomeric isolated system[J].Int J Veh Des,2009,49(4):303-317.
    [18]Suarez B,Chover J A,Rodriguez P,et al.Effectiveness of resilient wheels in reducing noise and vibrations[J].J Rail and Rapid Transit.2011,225(6):545-565.
    [19]Luo R K.Impact simulation and experiment on rubber anti-vibration systems[J].Polymer Testing,2016(50):335-342.
    [20]Luo Robert Keqi.Numerical prediction&case validation for rubber anti-vibration system[M].Germany:Lambert Academic Publishing,2017.
    [21]Dassault Systems.Abaqus user manual[M].Dassault Systems,USA,2018.
    [22]Ogden R W.Non-linear elastic deformations[M].Ellis Horwood,Chichester,UK.1984.
    [23]Nagdi K.Rubber as an engineering material:Guideline for users[M].Germany:Hanser Publishers,1993.
    [24]BS ISO 4662:2009.Rubber,vulcanized or thermoplastic.Determination of rebound resilience[S].
    [25]Clough R W,Penzien J.Dynamics of structures[M].McGraw-Hill,Inc,1993.
    [26]Luo Robert Keqi,GUO Naizheng,CHEN Xianmai.NFR(Natural Frequency Region)approach for dynamic evaluation of anti-vibration systems with rebound resilience method[J].Polymer Testing,2017(57):288-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700