用户名: 密码: 验证码:
Ti811表面激光熔覆复合涂层的微观组织及摩擦磨损性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Friction and Wear Resistance of Laser Cladding Composite Coating on Ti811 Surface
  • 作者:刘亚楠 ; 孙荣禄 ; 牛伟 ; 张天刚 ; 谭金花
  • 英文作者:Liu Yanan;Sun Ronglu;Niu Wei;Zhang Tiangang;Tan Jinhua;School of Mechanical Engineering,Tianjin Polytechnic University;Tianjin Area Major Laboratory of Advanced Mechatronics Equipment Technology;Engineering Technology Training Center,Civil Aviation University of China;
  • 关键词:材料 ; 激光熔覆 ; Ti811钛合金 ; 微观组织 ; 错配度 ; 显微硬度 ; 耐磨损性能
  • 英文关键词:materials;;laser cladding;;Ti811 titanium alloy;;microstructure;;misfit;;microhardness;;wear resistance
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:天津工业大学机械工程学院;天津市现代机电装备技术重点实验室;中国民航大学工程技术训练中心;
  • 出版日期:2018-09-07 11:38
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.505
  • 基金:国家自然科学基金(51371125)
  • 语种:中文;
  • 页:JJZZ201901020
  • 页数:9
  • CN:01
  • ISSN:31-1339/TN
  • 分类号:157-165
摘要
通过激光熔覆技术在Ti811钛合金表面制备了Ti基复合涂层,研究了涂层的物相组成、微观组织、显微硬度及摩擦磨损性能,分析了TiB_2-TiC复合镶嵌结构的形成机理。结果表明:涂层主要由增强相TiC和TiB_2、金属间化合物Ti2Ni以及基底α-Ti组成;TiB_2的(0001)面和TiC的(111)面之间的错配度仅为1.057%,TiB_2可以作为TiC最有效的异质形核的核心,形成TiB_2-TiC复合结构;弥散强化、固溶强化和细晶强化效应使得涂层的显微硬度可达617HV,为Ti811钛合金的1.62倍;涂层具有良好的摩擦磨损性能,磨损体积、磨损深度和平均摩擦因数分别为175×10~(-3) mm~3、80.13μm和0.39,磨损体积较基体约下降了26%。
        Ti-based composite coating is successfully fabricated on Ti811 titanium alloy surface by laser cladding.The phases,microstructures,microhardness,friction and wear resistance of the coating are studied,and the formation mechanism of TiB_2-TiC composite mosaic structure is analyzed.The results show that the main phases of the coating are reinforced phases of TiC and TiB_2,intermetallic compound Ti2 Ni and matrixα-Ti.The misfit between the(0001)face of TiB_2 and the(111)face of TiC is only 1.057%,which indicates that TiB_2 can be the most effective heterogeneous nucleation core of TiC to form a TiB_2-TiC composite structure.Due to dispersion strengthening,solid solution strengthening and fine-grain strengthening effect,the microhardness of the coating can reach 617 HV,which is 1.62 times that of Ti811 titanium alloy.The coating has good friction and wear resistance,its wear volume,wear depth and average friction coefficient are 175×10~(-3) mm~3,80.13μm and 0.39,respectively,and the wear volume of the coating is about 6% lower than that of the substrate.
引文
[1]Zhao Y Q,Zhu K Y,Li Z C,et al.Thermal stability of the Ti811alloy[J].Rare Metal Materials and Engineering,1997,26(3):35-39.赵永庆,朱康英,李佐臣,等.Ti811合金的热稳定性能[J].稀有金属材料与工程,1997,26(3):35-39.
    [2]Zhao Y Q.Ti-8Al-1Mo-1V alloy[J].Titanium Industry Progress,1994(6):11-12.赵永庆.Ti-8Al-1Mo-1V合金[J].钛工业进展,1994(6):11-12.
    [3]Zhang X H,Liu D X.Influence of surface coating on Ti811alloy resistance to fretting fatigue at elevated temperature[J].Rare Metals,2009,28(3):266-271.
    [4]Wendt U,Settegast S,Grodrian I U.Laser alloying of aluminum with titanium wire[J].Journal of Materials Science Letters,2003,22(19):1319-1322.
    [5]Weng F,Yu H J,Chen C Z,et al.Microstructures and wear properties of laser cladding Co-based composite coatings on Ti-6Al-4V[J].Materials&Design,2015,80:174-181.
    [6]Sun R L,Yang D Z,Guo L X,et al.Effect of laser parameter on microstructure and microhardness of NiCrBSi laser cladding layer[J].Optical Technique,2001,27(1):34-36,38.孙荣禄,杨德庄,郭立新,等.激光工艺参数对钛合金表面NiCrBSi合金熔覆层组织及硬度的影响[J].光学技术,2001,27(1):34-36,38.
    [7]Wu Y,Wang A H,Zhang Z,et al.Laser alloying of Ti-Si compound coating on Ti-6Al-4Valloy for the improvement of bioactivity[J].Applied Surface Science,2014,305(30):16-23.
    [8]Sun R L,Niu W,Lei Y W,et al.Tribological properties in vacuum of TiB2-TiC/Ni laser clad layer on titanium alloy substrate[J].Transactions of Materials and Heat Treatment,2012,33(5):131-135.孙荣禄,牛伟,雷贻文,等.钛合金表面激光熔覆TiB2-TiC/Ni复合涂层的真空摩擦磨损性能[J].材料热处理学报,2012,33(5):131-135.
    [9]Zhang T G,Sun R L.Microstructure and properties of nano-Ti3Al laser cladding layer prepared Ti811alloy surface[J].Chinese Journal of Lasers,2018,45(1):0102002.张天刚,孙荣禄.Ti811表面原位生成纳米Ti3Al激光熔覆层的组织和性能[J].中国激光,2018,45(1):0102002.
    [10]Zhai Y J,Liu X B,Qiao S J,et al.Characteristics of laser cladα-Ti/TiC+(Ti,W)C1-x/Ti2SC+TiScomposite coatings on TA2titanium alloy[J].Optics&Laser Technology,2017,89:97-107.
    [11]Zhang G Y,Wang C L,Gao Y,et al.Effect of are earth La2O3on the microstructure of laser cladding Ni-based coatings on 6063 Al alloys[J].Chinese Journal of Lasers,2014,41(11):1103001.张光耀,王成磊,高原,等.稀土La2O3对6063Al激光熔覆Ni基熔覆层微观结构的影响[J].中国激光,2014,41(11):1103001.
    [12]Zhou S F,Zeng X Y.Growth characteristics and mechanism of carbides precipitated in WC-Fe composite coatings by laser induction hybrid rapid cladding[J].Journal of Alloys and Compounds,2010,505(2):685-691.
    [13]Schwendner K I,Banerjee R,Collins P C,et al.Direct laser deposition of alloys from elemental powder blends[J].Scripta Materialia,2001,45(10):1123-1129.
    [14]Masanta M,Shariff S M,Roy Choudhury A.Evaluation of modulus of elasticity,nano-hardness and fracture toughness of TiB2-TiC-Al2O3composite coating developed by SHS and laser cladding[J].Materials Science and Engineering A,2011,528(16/17):5327-5335.
    [15]Xuan H F,Wang Q Y,Bai S L,et al.A study on microstructure and flame erosion mechanism of a graded Ni-Cr-B-Si coating prepared by laser cladding[J].Surface and Coatings Technology,2014,244:203-209.
    [16]Weng F,Yu H J,Chen C Z,et al.Microstructure and property of composite coatings on titanium alloy deposited by laser cladding with Co42+TiN mixed powders[J].Journal of Alloys and Compounds,2016,686:74-81.
    [17]Li P T,Wu Y Y,Liu X F.Controlled synthesis of different morphologies of TiB2 microcrystals by aluminum melt reaction method[J].Materials Research Bulletin,2013,48(6):2044-2048.
    [18]Weng F.Microstructure and wear property of ceramics reinforced metal matrix composite laser cladding coatings on titanium alloy[D].Jinan:Shandong University,2017.翁飞.钛合金表面陶瓷强化金属基复合激光熔覆层的微观组织与耐磨性能研究[D].济南:山东大学,2017.
    [19]Sorrell C,Beratan H R,Bradt R C,et al.Directional solidification of(Ti,Zr)carbide-(Ti,Zr)diboride eutectics[J].Journal of the American Ceramic Society,2006,67(3):190-194.
    [20]Bramfitt B L.The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J].Metallurgical and Materials Transactions B,1970,1(7):1987-1995.
    [21]Yang Q X,Zhao B,Yun X,et al.Influence of nanoY2O3on microstructure and wear resistance of Fe-CrC hardfacing alloy surface[J].Surface Technology,2015,44(4):42-47,53.杨庆祥,赵斌,员霄,等.纳米Y2O3对过共晶FeCr-C堆焊合金表面微观组织与耐磨性的影响[J].表面技术,2015,44(4):42-47,53.
    [22]Shi Z J,Liu S,Gao Y K,et al.Mechanism of Y2O3as heterogeneous nucleus of TiC in hypereutectic FeCrC-Ti-Y2O3coating:first principle calculation and experiment research[J].Materials Today Communications,2017,13:80-91.
    [23]Hansen N.Hall-Petch relation and boundary strengthening[J].Scripta Materialia,2004,51(8):801-806.
    [24]Zhu C C,Qu W,Zhang X H,et al.Progress in research on TiC-TiB2 composites[J].Materials Review,2003,17(1):48-50,54.朱春城,曲伟,张幸红,等.TiC-TiB2复合材料的研究进展[J].材料导报,2003,17(1):48-50,54.
    [25]Wang Y,Zou B L,Cao X Q.Combustion synthesis of TiC-TiB2particulates locally reinforced steel matrix composites from an Al-Ti-B4C system during casting[J].Acta Metallurgica Sinica,2014,50(3):367-372.王盈,邹兵林,曹学强.Al-Ti-B4C体系熔体内燃烧合成TiC-TiB2颗粒局部增强钢基复合材料[J].金属学报,2014,50(3):367-372.
    [26]Chen T,Liu D F,Wu F,et al.Effect of CeO2on microstructure and wear resistance of TiC bioinert coatings on Ti6Al4V alloy by laser cladding[J].Materials,2018,11(1):58.
    [27]Sun R L,Yang X J.Microstructure,friction and wear properties of in situ synthesized TiC-TiB2/Nibased metallic ceramic coating by laser cladding[J].Journal of the Chinese Ceramic Society,2003,31(12):1221-1224.孙荣禄,杨贤金.激光熔覆原位合成TiC-TiB2/Ni基金属陶瓷涂层的组织和摩擦磨损性能[J].硅酸盐学报,2003,31(12):1221-1224.
    [28]Wang S,Cheng X,Tian X J,et al.Effect of TiCaddition on microstructures and properties of MCcarbide reinforced Inconel625 composites by laser additive manufacturing[J].Chinese Journal of Lasers,2018,45(6):0602002.王舒,程序,田象军,等.TiC添加量对激光增材制造MC碳化物增强Inconel625复合材料组织及性能的影响[J].中国激光,2018,45(6):0602002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700