用户名: 密码: 验证码:
一种基于可预报性的暴雨预报评分新方法Ⅰ:中国暴雨可预报性综合指数
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A new verification method for heavy rainfall forecast based on predictability Ⅰ: Synthetic predictability index of heavy rainfall in China
  • 作者:陈静 ; 刘凑华 ; 陈法敬 ; 韦青 ; 李嘉鹏 ; 赵滨 ; 杨东 ; 张志刚
  • 英文作者:CHEN Jing;LIU Couhua;CHEN Fajing;WEI Qing;LI Jiapeng;ZHAO Bin;YANG Dong;ZHANG Zhigang;National Meteorological Center;The Meteorological Bureau of Zhejiang Province;The Meteorological Bureau of Shanxi Province;China Meteorological Administration;
  • 关键词:中国暴雨 ; 暴雨气候频率 ; 暴雨面积比率 ; 数值模式暴雨评分 ; 可预报性综合指数
  • 英文关键词:Heavy rainfall over China;;Climate frequency;;Area ratio of rainstorm;;Scores of heavy rainfall of numerical model;;Synthetic predictability index of heavy rainfall
  • 中文刊名:QXXB
  • 英文刊名:Acta Meteorologica Sinica
  • 机构:国家气象中心;浙江省气象台;山西省气象局;中国气象局;
  • 出版日期:2019-02-15
  • 出版单位:气象学报
  • 年:2019
  • 期:v.77
  • 基金:中国气象局气象预报业务关键技术发展专项(YBGJXM201706);; 国家科技支撑计划项目(2015BAC03B01);; 国家重点基础研究发展计划973项目(2012CB417204)
  • 语种:中文;
  • 页:QXXB201901002
  • 页数:13
  • CN:01
  • ISSN:11-2006/P
  • 分类号:17-29
摘要
针对当前暴雨预报检验采用二分类事件检验方法存在的双重惩罚导致评分过低,没有考虑到中国暴雨可预报性时、空分布不均,不便于对比分析不同区域暴雨预报能力差异等问题,为了发展基于可预报性的新型暴雨预报评分方法,在综合分析影响预报员暴雨预报信心的主要因素(暴雨气候统计特征、天气影响系统运动尺度特征及数值模式预报能力等)基础上,利用2008—2016年4—10月中国国家气象信息中心5 km×5 km分辨率的多源降水融合格点分析资料、站点降水观测资料和中国国家级业务区域模式降水预报资料以及扩展空间暴雨样本统计方法,构建了一种新型的中国暴雨可预报性综合指数(Synthetic Predictability Index of Heavy Rainfall,以下简称SPI)数学模型,以定量描述中国各区域的暴雨可预报性特征。SPI数学模型由暴雨气候频率、暴雨面积比率和模式暴雨预报成功指数(Threat Score,TS)3个分量组成,计算了2008—2016年4—10月SPI的3个分量及其时、空变化特征。分析结果显示:暴雨面积比率对SPI的时间和空间变化影响最大,两者偏相关系数大于0.9;其次是暴雨气候频率的影响,两者偏相关系数值为0.8左右;第三是模式暴雨预报TS评分的影响,两者的偏相关系数为0.7左右。分析还发现,SPI大值区随季节而变化,空间分布不均匀:4—5月,可预报性大值区主要分布在华南地区;6—7月,主要分布在江淮流域; 7月中旬至8月,大值中心从江淮北部移到华北和东北地区;9月,副热带高压南撤,大值中心也相应南撤。
        To meet the requirement of developing a new method for evaluating the forecast skill of heavy rainfall, the main factors affecting forecaster's confidence in heavy rainstorm forecasting, that is, the forecasting ability of statistical characteristics of the heavy rainstorm climate, the characteristics of movement scale of systems influencing heavy rainstorms and the numerical prediction model, are considered in the present study to develop a new mathematical model of Synthetic Predictability Index of Heavy Rain(SPI). The SPI is composed of three components: rainstorm climatic frequency, rainstorm area ratio and numerical model rainstorm forecasting success index(Threat Score, TS). It is established based on analysis of 5 km×5 km resolution multi-source precipitation fusion grid analysis data, precipitation observation data at weather stations, precipitation forecast data produced by operational model on regional scale and the statistical method of extended space rainstorm samples of the National Meteorological Information Center. The three components of SPI and their spatial-temporal variations during April-October from 2008 to 2016 are calculated. The results show that heavy rainfall changes with season and its spatial distribution is not uniform. From April to May, the more predictable areas are mainly distributed in southern China; from June to July, the more predictable areas are mostly located in the Changjiang-Huaihe river basins; from mid-July to August, they are largely found in North and Northeast China. In September, following the southward retreat of the subtropical high pressure, the large value center of SPI moves southward correspondingly. In addition, the partial correlation coefficients between the rainstorm predicta-bility index and the three components shows that the partial correlation coefficient between the SPI and the storm area ratio is the highest with the value higher than0.9.The comprehensive index of rainstorm predictability in China has laid a footstone for the development of verification scores of rainstorm forecasting based on predictability.
引文
陈法敬, 陈静. 2015. “SEEPS”降水预报检验评分方法在我国降水预报中的应用试验. 气象科技进展, 5(5): 6-13. Chen F J, Chen J. 2015. The application experiment of a new score for precipitation verification based on the SEEPS principle. Adv Meteor Sci Technol, 5(5): 6-13 (in Chinese)
    陈静, 薛纪善, 颜宏. 2003. 华南中尺度暴雨数值预报的不确定性与集合预报试验. 气象学报, 61(4): 432-446. Chen J, Xue J S, Yan H. 2003. The uncertainty of mesoscale numerical prediction of South China heavy rain and the ensemble simulations. Acta Meteor Sinica, 61(4): 432-446 (in Chinese)
    陈敏琼, 彭东海. 2014. 关于偏相关系数的计算公式的一点注记. 滁州学院学报, 16(2): 26-29. Chen M Q, Peng D H. 2014. A note about the calculation of partial correlation coefficient. J Chuzhou Univ, 16(2): 26-29 (in Chinese)
    丁一汇. 2014. 陶诗言先生在中国暴雨发生条件和机制研究中的贡献. 大气科学, 38(4): 616-626. Ding Y H. 2014. Contributions of prof. Shiyan Tao to the study of formation conditions and mechanisms of heavy rainfall in China. Chinese J Atmos Sci, 38(4): 616-626 (in Chinese)
    黄嘉佑, 李庆祥. 2015. 气象数据统计分析方法. 北京: 气象出版社, 37-38. Huang J Y, Li Q X. 2015. Statistical Analysis of Meteorological Data. Beijing: China Meteorological Press, 37-38 (in Chinese)
    矫梅燕. 2010. 现代数值预报业务. 北京: 气象出版社, 162-176. Jiao M Y. 2010. Modern Numerical Weather Prediction. Beijing: China Meteorological Press, 162-176 (in Chinese)
    刘建勇, 谈哲敏, 顾思南. 2011. 梅雨期暴雨系统的流依赖中尺度可预报性. 大气科学, 35(5): 912-926. Liu J Y, Tan Z M, Gu S N. 2011. Flow-dependent mesoscale predictability of Meiyu heavy rainfall. Chinese J Atmos Sci, 35(5): 912-926 (in Chinese)
    罗雨, 张立凤. 2010. 一次梅雨暴雨预报中的误差演变及可预报性分析. 气象学报, 68(3): 411-420. Luo Y, Zhang L F. 2010. A case study of the error growth evolution in a meiyu front heavy precipitation forecast and an analysis of the predictability. Acta Meteor Sinica, 68(3): 411-420 (in Chinese)
    孙继松, 雷蕾, 于波等. 2015. 近10年北京地区极端暴雨事件的基本特征. 气象学报, 73(4): 609-623. Sun J S, Lei L, Yu B, et al. 2015. The fundamental features of the extreme severe rain events in the recent 10 years in the Beijing area. Acta Meteor Sinica, 73(4): 609-623 (in Chinese)
    唐文苑, 周庆亮, 刘鑫华等. 2017. 国家级强对流天气分类预报检验分析. 气象, 43(1): 67-76. Tang W Y, Zhou Q L, Liu X H, et al. 2017. Analysis on verification of national severe convective weather categorical forecasts. Meteor Mon, 43(1): 67-76 (in Chinese)
    陶诗言. 1980. 中国之暴雨. 北京: 科学出版社, 1-10. Tao S Y. 1980. Heavy Rainstorm in China. Beijing: Science Press, 1-10 (in Chinese)
    王会军, 陈丽娟, 李维京等. 2007. 中国区域月平均温度和降水的模式可预报性分析. 气象学报, 65(5): 725-732. Wang H J, Chen L J, Li W J, et al. 2007. Predictability of DERF on monthly mean temperature and precipitation over China. Acta Meteor Sinica, 65(5): 725-732 (in Chinese)
    汪娇阳, 陈静, 刘琳等. 2014. 极端降水天气预报指数对气候累积概率分布敏感性研究. 暴雨灾害, 33(4): 313-319. Wang J Y, Chen J, Liu L, et al. 2014. The sensitivity of the extreme precipitation forecast index on climatological cumulative probability distribution. Torrent Rain Dis, 33(4): 313-319 (in Chinese)
    王雨, 公颖, 陈法敬等. 2013. 区域业务模式6 h降水预报检验方案比较. 应用气象学报, 24(2): 171-178. Wang Y, Gong Y, Chen F J, et al. 2013. Comparison of two verification methods for 6 h precipitation forecasts of regional models. J Appl Meteor Sci, 24(2): 171-178 (in Chinese)
    杨波, 孙继松, 毛旭等. 2016. 北京地区短时强降水过程的多尺度环流特征. 气象学报, 74(6): 919-934. Yang B, Sun J S, Mao X, et al. 2016. Multi-scale characteristics of atmospheric circulation related to short-time strong rainfall events in Beijing. Acta Meteor Sinica, 74(6): 919-934 (in Chinese)
    宇婧婧, 沈艳, 潘旸等. 2015. 中国区域逐日融合降水数据集与国际降水产品的对比评估. 气象学报, 73(2): 394-410. Yu J J, Shen Y, Pan Y, et al. 2015. Comparative assessment between the daily merged precipitation dataset over China and the world's popular counterparts. Acta Meteor Sinica, 73(2): 394-410 (in Chinese)
    中国科学院大气物理研究所. 1998. 东亚季风和中国暴雨——庆贺陶诗言院士八十华诞. 北京: 气象出版社. Institute of Atmospheric Physics, Chinese Academy of Science. 1998. East Asian Monsoon and Chinese Rainstorm: Celebrating the Eighty Birthday of Tao Shiyan. Beijing: China Meteorological Press (in Chinese)
    周放, 孙照渤, 许小峰等. 2014. 中国东部夏季暴雨日数的分布特征及其与大气环流和海温的关系. 气象学报, 72(3): 447-464. Zhou F, Sun Z B, Xu X F, et al. 2014. Spatiotemporal characteristics of summer rainstorm days in eastern China and their relationships with the atmospheric circulation and SST. Acta Meteor Sinica, 72(3): 447-464 (in Chinese)
    Chen J, Xue J S, Yan H. 2005. The uncertainty of mesoscale numerical prediction of heavy rain in south China and the ensemble simulations. Acta Meteor Sinica, 19(1): 1-18
    Lorenz E N. 1969. The predictability of a flow which possesses many scales of motion. Tellus, 21(3): 289-307
    Thompson P D. 1957. Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 9(3): 275-295
    WMO. 2009. Recommendations for the verification and intercomparison of QPFs and PQPFs from operational NWP Models, revision 2 (WMO TD No. 1485). https://www.wmo.int/pages/prog/arep/wwrp/new/documents/WWRP2009_1.pdf, 2008.10
    WMO. 2017. Standardized verification of deterministic NWP products. 89-94.https://library.wmo.int/doc_num.php?explnum_id=4246, 2015.05.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700