用户名: 密码: 验证码:
深海甲烷电化学原位长期监测技术及其在海洋环境调查和天然气水合物勘探中的意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Deep sea methane electrochemical in-situ long-term monitoring technology and its significance in the ocean environmental investigation and gas hydrate exploration
  • 作者:孙春岩 ; 王栋琳 ; 张仕强 ; 贺会策 ; 赵浩 ; 凌帆 ; 尹文斌
  • 英文作者:SUN Chun-Yan;WANG Dong-Lin;ZHANG Shi-Qiang;HE Hui-Ce;ZHAO Hao;LING Fan;YIN Wen-Bin;School of Engineering and Technology,China University of Geosciences ( Beijing);No.5 Gold Geological Party of PAP;Guangzhou Marine Geological Survey,China Geological Survey;Hunan Geo-sun High-Technology Co.,Ltd;School of Geosciences and Info-Physics of Central South University;
  • 关键词:深海环境 ; 长期监测 ; 甲烷原位传感器 ; 海水甲烷浓度 ; 海洋天然气水合物 ; 胶州湾
  • 英文关键词:deep-sea environment;;long-term monitoring;;methane in-situ sensor;;seawater methane concentration;;marine gas hydrate;;Jiaozhou Bay
  • 中文刊名:WTYH
  • 英文刊名:Geophysical and Geochemical Exploration
  • 机构:中国地质大学(北京)工程技术学院;武警黄金第五支队;中国地质调查局广州海洋地质调查局;湖南继善高科技有限公司;中南大学地球科学与信息物理学院;
  • 出版日期:2019-02-15
  • 出版单位:物探与化探
  • 年:2019
  • 期:v.43
  • 基金:国家自然科学基金资助项目(41276056);; 国家高技术研究发展计划(“863”计划)项目(2013AA09A411)
  • 语种:中文;
  • 页:WTYH201901001
  • 页数:16
  • CN:01
  • ISSN:11-1906/P
  • 分类号:5-20
摘要
深海溶解甲烷浓度数据连续获取的方法技术,对于海洋环境和天然气水合物开发过程中甲烷扩散作用及通量的动态监测,具有重要的科学意义和实际应用价值。本文较详细地介绍了依据"海水脱气、气体样品定量输入、电化学高精度检测"技术思路,采用"增压排液整机系统控制的海水循环、减压稳流、气液分离、烃类组分高精度检测技术改进"方法,研发"深海甲烷电化学原位长期监测技术"的关键环节和技术方法。结合原位传感器在胶州湾港口为期94天底水长期监测实验获取的数据成果,对原位传感器的技术性能、数据质量、地质效果进行了研究评价。结果表明:(1)原位传感器量程甲烷指标达到0.01~10 000 nmol/L,灵敏度达到0.01 nmol/L,对烃类组分检测具有较好的稳定性和选择性;(2)监测水域溶解甲烷数值范围19.01~106.87 nmol/L,正常甲烷背景32.41 nmol/L,局部异常甲烷背景80.60 nmol/L,资料显示异常与污水排放过程对海水环境污染有关;(3)实测甲烷数据成果地球化学特征与胶州湾海域海水环境以往调查研究成果符合,证明了实测数据的客观性和科学性;(4)海试监测试验成果证明,原位传感器测试性能可靠、结构设计合理、设计思路科学,基本具备了海洋科学调查中对海水甲烷浓度数据获取的能力,在未来海洋天然气水合物开发过程中对甲烷扩散作用的动态监测及深海甲烷浓度通量的长期监测中,具有实际应用价值和科学意义。
        The continuous acquisition of dissolved methane concentration data in the deep sea has important scientific significance and practical application value for dynamic monitoring of marine environment and methane diffusion in gas hydrates development. This paper introduces key technologies of electrochemical in-situ long-term monitoring technology for deep sea methane in detail,which include the technical ideas of " seawater degassing,quantitative injection of gas samples,and high-precision electrochemical detection",the technical method of " sea water circulation controlled by supercharged drainage system,decompressed steady flow,gas-liquid separation,and improvement of high precision detection technology for hydrocarbon components". Based on the long-term monitoring experiment data obtained from bottom water in Jiaozhou Bay during 94 days,the authors studied and evaluated the technical performance,data quality and geological effect of the in-situ sensors. Some conclusions have been reached:( 1) In-situ sensor has an index range of 0.01 ~ 10 000 nmol/L and sensitivity reaches 0.01 nmol/L. It has good stability and selectivity for the detection of hydrocarbon components;( 2) The range of dissolved methane in the monitoring area is 19.01 ~ 106.87 nmol/L,the normal methane background is 32.41 nmol/L,and the local anomalous methane background is 80. 60 nmol/L. These data show that abnormality is related to sewage discharge and seawater pollution;( 3) The results of measured methane data are consistent with those obtained from previous investigation and study of seawater environment in Jiaozhou Bay,which proves that the measured data are objective and scientific;( 4) The sea trial monitoring results show that the in-situ sensor is reliable in testing,reasonable in structure design and scientific in design ideas,and it basically has the capability for acquiring seawater methane concentration data in marine scientific investigation. It has practical application value and scientific significance in the dynamic monitoring of methane diffusion and long-term monitoring of deep sea methane concentration during the development of marine gas hydrate in the future.
引文
[1]喻西崇,李清平,安维杰.海底沉积物中天然气水合物生成和分解规律研究进展[J].中国海上油气,2006,18(1):61-67.Yu X C,Li Q P,An W J. Some advances in studying formation and dissociation of gas hydrate in submarine sediments[J]. China Offshore and Gas,2006,18(1):61-67.
    [2]于晓果,金翔龙.天然气水合物分解与全球变暖[J].第四纪研究,2001,21(6):568.Yu X G,Jin X L. Gas hydrate decomposition and global warming[J].Quaternary Sciences,2001,21(6):568.
    [3] Sloan E D. Clathrate hydrates of natural gases(2ed.)[M]. New York:Marcel Dekker Inc,1998.
    [4]金庆焕.天然气水合物资源概论[M].北京:科学出版社,2006.Jin Q H. Overview of gas hydrate resources[M]. Beijing:Science Press,2006.
    [5]孙春岩,赵浩,贺会策,等.海洋底水原位探测技术与中国南海天然气水合物勘探[J].地学前缘,2017,24(6):225-241.Sun C Y,Zhao H,He H C,et al. In-situ detection of ocean floor seawater and gas hydrate exploration of the South China Sea[J].Earth Science Frontiers,2017,24(6):225-241.
    [6] Garcia M L,Masson M. Environmental and geologic application of solid-state methane sensors[J]. Environmental Geology,2004,46(8):1059-1063.
    [7] Isern A R. National science foundation's ocean observatory initiative[J].Sealing Technology,2005,46(6):55-60.
    [8]杨涛,蒋少涌,葛璐,等.南海北部琼东南盆地HQ-1PC沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义[J].中国科学:地球科学,2013,43(3):329-338.Yang T,Jiang S Y,Ge L,et al.Geochemistry of pore waters from HQ-1PC of the Qiongdongnan Basin,northern South China Sea,and its implications for gas hydrate exploration[J].Science China:Earth Sciences,2013,43(3):329-338.
    [9] Kastner M,Claypool G,Robertson G. Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon,northern Gulf of Mexico[J]. Marine and Petroleum Geology,2008,25(9):860-872.
    [10]陈勇,袁东星,李权龙,等.常温吹扫捕集—气相色谱法测定海水中氧化亚氮[J].分析化学,2007,35(6):897-900.Chen Y,Yuan D X,Li Q L,et al. Determination of nitrous oxide in seawater by room temperature purge and trap-gas chromatography[J].Chinese Journal of Analytical Chemistry,2007,35(6):897-900.
    [11]黄永样,Suess E,吴能友,等.南海北部陆坡甲烷和天然气水合物地质:中德合作SO-177航次成果专报[M].北京:地质出版社,2008.Huang Y Y,Suess E. Wu N Y,et al. Methane and gas hydrate geology of the northern South China Sea:Sino-german cooperative SO-177 cruise report[M]. Beijing:Geological Publishing House,2008.
    [12] Boulart C,Connelly D P,Mowlem M C. Sensors and technologies for in-situ dissolved methane measurements and their evaluation using Technology Readiness Levels[J]. Trac Trends in Analytical Chemistry,2010,29(2):186-195.
    [13]尹希杰,周怀阳,杨群慧,等.南海北部甲烷渗漏活动存在的证据:近底层海水甲烷高浓度异常[J].海洋学报:中文版,2008,30(6):69-75.Yin X J,Zhou H Y,Yang,Q H,et al. The evidence for the existence of methane seepages in the northern South China Sea:Abnormal high methane concentration in bottom waters[J]. Acta Oceanologica Sinica,2008,30(6):69-75.
    [14]周怀阳,吴自军,彭晓彤,等.大西洋洋中脊Logatchev热液场水柱中甲烷羽状流的探测[J].科学通报,2007,52(9):1058-1063.Zhou H Y,Wu Z J,Peng X T,et al.Detection of methane plumes in the hydrothermal field water column of logatchev in the mid-atlantic ridge[J].Chinese Science Bulletin,2007,52(9):1058-1063.
    [15]邸鹏飞,冯东,高立宝,等.海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J].地球物理学进展,2008,23(5):1592-1602.Di P F,Feng D,Gao L B,et al. In-situ measurement of fluid flow and signatures of seep activity at marine seep sites[J]. Progress in Geophysics,2008,23(5):1592-1602.
    [16]邸鹏飞,陈庆华,陈多福.海底冷泉渗漏气体流量原位在线测量技术研究[J].热带海洋学报,2012,31(5):83-87.Di P F,Chen Q H,Chen D F. In situ on-line measuring device of gas seeping flux at marine seep sites and experimental study[J].Journal of Tropical Oceanography,2012,31(5):83-87.
    [17]王庆光,徐瑞松,王洁,等.南海北部油气化探研究——以甲烷浓度为例[J].海洋科学,2010,34(6):9-15.Wang Q G,Xu R S,Wang J,et al. Oil and gas geochemical exploration in the northern South China Sea:A case study of methane concentration[J]. Marine Sciences,2010,34(6):9-15.
    [18]于新生,李丽娜,胡亚丽,等.海洋中溶解甲烷的原位检测技术研究进展[J].地球科学进展,2011,26(10):1030-1037.Yu X S,Li L N,Hu Y L,et al. The development of in-situ sensors for dissolved methane measurement in the Sea[J].Advances in Earth Science,2011,26(10):1 030-1037.
    [19] Kroger S,LAW R J. Sensing the sea[J]. Trends in biotechnology,2005,23(5):250-256.
    [20] Varney M S. Chemical sensors in oceanography[M]. Boca Raton:CRC Press,2000.
    [21]申正伟,孙春岩,贺会策,等.深海原位溶解甲烷传感器(METS)的原理及应用研究[J].海洋技术学报,2015,34(5):19-25.Shen Z W,Sun C Y,He H C,et al. The principle and applied research of in-situ METS for dissolved methane measurement in deep sea[J]. Journal of Ocean Technology,2015,34(5):19-25.
    [22]王维熙,孙春岩,杨慧,等.海洋油气勘探中高灵敏度气态烃现场探测系统的研制[J].地球科学,2004,29(2):163-168.Wang W X,Sun C Y,Yang H,et al. Investigation to on-site detection system for gaseous hydrocarbon with high sensitivity be used to explore gas and oil in sea[J].Earth Science:Journal of China University of Geosciences,2004,29(2):163-168.
    [23]魏小芳,罗一菁,刘可禹,等.油气藏埋存二氧化碳生物转化甲烷的机理和应用研究进展[J].地球科学进展,2011,26(5):499-506.Wei X F,Luo Y J,Liu K Y,et al. Research progress on the mechanism and potential application of CH4bioconversion form CO2in oil and gas reservoirs[J]. Advances in Earth Science,2011,26(5):499-506.
    [24]臧家业,王相芹.海湾地区海水中的溶存甲烷浓度、分布特征及成因[J].黄渤海海洋,1997,15(1):20-29.Zang J Y,Wang X Q. The dissolved methane in seawater of estuaries,distribution features and formation[J].Journal of Oceanography of Huanghai and Bohai Seas,1997,15(1):20-29.
    [25]孙春岩,张志冰,庞云天,等.一种海水中甲烷浓度原位探测系统[P].中国专利:201110196474.4,2013.Sun C Y,Zhang Z B,Pang Y T,et al. In-situ detecting system of methane(CH4)concentration in seawater[P]. China Patent:201110196474.4,2013.
    [26]竺玮煌.天然气水合物海水中甲烷原位富集和高精度探测系统的研制[D].北京:中国地质大学(北京),2011.Zhu W H.The research on CH4in sea water for sample in-situ collecting and extra accurate detecting system of marine gas hydrates[D].Beijing:China University of Geosciences(Beijing),2011.
    [27]张志冰.海水中甲烷浓度原位地球化学探测系统的研发与应用[D].北京:中国地质大学(北京),2013.Zhang Z B. Development and application on in-situ geochemical detection technology of methane concentration in seawater[D].Beijing:China University of Geosciences(Beijing),2013.
    [28]李东梁.海洋探测仪器承压舱的设计[J].机械研究与应用,2013,26(5):126-128.Li D L. Design of the exploration instrument cabin used in ocean[J]. Mechanical Research and Application,2013,26(5):126-128.
    [29]中华人民共和国国家质量监督检验检疫总局.JJG 700-2016气相色谱仪检定规程[S].北京:中国标准出版社,2016.AQSIQ. JJG 700-2016 Verification regulation of gas chromatogaphs[S].Beijing:China Standard Press,2016.
    [30]中华人民共和国国家质量监督检验检疫总局. GB/T 29173-2012油气地球化学勘探试样测定方法[S].北京:中国标准出版社,2013.AQSIQ. GB/T 29173-2012 Determination method for samples of geochemical exploration for oil and gas[S]. Beijing:China Standard Press,2013.
    [31]赵慧敏,丁海兵,吕丽娜,等.胶州湾海水甲烷氧化速率的水平与垂直变化初步研究[J].中国海洋大学学报:自然科学版,2016,46(6):90-99.Zhao H M,Ding H B,Luy L N,et al. The preliminary study of horizontal and vertical variations of methane oxidation rates in the Jiaozhou Bay[J]. Periodical of Ocean University of China,2016,46(6):90-99.
    [32]曹兴朋,张桂玲,马啸,等.春季东、黄海溶解甲烷的分布和海气交换通量[J].环境科学,2013,34(7):2565-2573.Cao X P,Zhang G L,Ma X,et al. Distribution and air-sea fluxes of methane in the Yellow Sea and the East China Sea in the spring[J].Environmental Science,2013,34(7):2565-2573.
    [33]张桂玲.中国近海部分海域溶解甲烷和氧化亚氮的生物地球化学研究[D].青岛:中国海洋大学,2004.Zhang G L. Studies on biogeochemistry of dissolved methane and nitrous oxide in the coastal waters of China[D]. Qingdao:Ocean University of China,2004.
    [34]杨晶.胶州湾水体及沉积物中甲烷和氧化亚氮的生物地球化学研究[D].青岛:中国海洋大学,2009.Yang J. Biogeochemistry of methane and nitrous oxide in the water and sediments of Jiaozhou Bay[D]. Qingdao:Ocean University of China,2009.
    [35]李佩佩,张桂玲,赵静,等.胶州湾及周边海域大气和海水中N2O和CH4的分布及海气交换通量[J].中国海洋大学学报:自然科学版,2009,39(4):805-814.Li P P,Zhang G L,Zhao J,et al. The distributions and atmospheric fluxes of nitrous oxide and methane in Jiaozhou Bay and its adjacent coastal area[J].Periodical of Ocean University of China,2009,39(4):805-814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700