用户名: 密码: 验证码:
16 nm极紫外光刻物镜热变形对成像性能影响的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Thermal Deformation on Imaging Performance for 16 nm Extreme Ultraviolet Lithography Objective
  • 作者:李艳 ; 刘岩 ; 刘丽辉
  • 英文作者:Li Yanqiu;Liu Yan;Liu Lihui;Key Laboratory of Photoelectronic Imaging Technology and System,Ministry of Education,School of Optoelectronics,Beijing Institute of Technology;Beijing Aerospace Institute for Metrology and Measurement Technology;
  • 关键词:光学设计 ; 热变形 ; 极紫外光刻 ; 有限元分析 ; 反射系统 ; 成像性能
  • 英文关键词:optical design;;thermal deformation;;extreme ultraviolet lithography;;finite element analysis;;catoptric system;;imaging performance
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:北京理工大学光电学院光电成像技术与系统教育部重点实验室;北京航天计量测试技术研究所;
  • 出版日期:2018-09-07 11:22
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.442
  • 基金:国家科技重大专项(2012ZX02702001-002)
  • 语种:中文;
  • 页:GXXB201901039
  • 页数:8
  • CN:01
  • ISSN:31-1252/O4
  • 分类号:427-434
摘要
16 nm极紫外光刻(EUVL)物镜热变形是影响其高分辨成像的主要因素之一。为了给EUVL系统热管理提供可靠的技术依据,对数值孔径为0.33且满足16 nm技术节点的典型EUVL物镜进行热变形仿真研究。采用有限元软件ANSYS仿真曝光过程中反射镜的瞬态温度和变形分布。以Zernike多项式为接口拟合变形面,分析热变形对成像性能的影响。结果表明:物镜的最高温升和最大变形分别为3.9℃和10.2 nm,高温态物镜的热变形引起的最大波像差均方根和畸变分别为0.1λ和56 nm,超出了合理范围。M3和M4反射镜热变形累加引起的波像差和畸变的占比分别为88%和99%,对成像性能的影响起主导作用,需要对其进行严格控温。
        Thermal deformation of 16 nm extreme ultraviolet lithography(EUVL) objective is one of the main factors influencing its high resolution imaging. In order to provide a reliable technical basis for the thermal management of EUVL system, we simulate the thermal deformation of a typical 16 nm EUVL objective with 0.33 numerical aperture. The finite element software ANSYS is used to simulate the transient temperature and thermal deformation of each mirror during exposure. The deformed mirror surface is fitted with Zernike polynomial as an interface tool to evaluate the effect of the thermal deformation on imaging performance. The results show that the maximum temperature rise and the maximum thermal deformation of the objective are 3.9℃ and 10.2 nm,respectively. The thermal deformation of the objective in the high temperature state causes maximum wavefront error root mean square(RMS) of 0.1λ and the distortion of 56 nm, which are beyond the reasonable range. The wavefront error RMS and the distortion caused by the thermal deformation of M3 and M4 mirrors together account for 88% and 99%, which play leading roles in the imaging performance. The temperatures of these two mirrors should be controlled strictly.
引文
[1] Wagner C,Harned N. Lithography gets extreme[J].Nature Photonics, 2010, 4(1):24-26.
    [2] Pirati A, van Schoot J, Troost K, et al. The future of EUV lithography:enabling Moore's law in the next decade[J]. Proceedings of SPIE, 2017, 10143:101430G.
    [3] Liu F, Li Y Q. Design of high numerical aperture projection objective for industrial extreme ultraviolet lithography[J]. Acta Optica Sinica, 2011, 31(2):0222003.刘菲,李艳秋.大数值孔径产业化极紫外投影光刻物镜设计[J].光学学报,2011, 31(2):0222003.
    [4] Wang L P. The project of “study of key technology for extrem-ultraviolate lithography” passed the acceptance inspection[J]. Analytical Instrumentation, 2017(4):96.王丽萍.长春光机所承担的国家科技重大专项项目“极紫外光刻关键技术研究”通过验收[J].分析仪器,2017(4):96.
    [5] Zhang H, Li S K, Wang X Z. Fast simulation method of extreme-ultraviolet lithography 3D maskbased on variable separation degration method[J].Acta Optica Sinica, 2017, 37(5):0505001.张恒,李思坤,王向朝.基于变量分离分解法的极紫外光刻三维掩模快速仿真方法[J].光学学报,2017,37(5):0505001.
    [6] Cao Z, Li Y Q, Liu F. Manufacturable design of 16-22 nm extreme ultraviolet lithographic objective[J].Acta Optica Sinica, 2013, 33(9):0922005.曹振,李艳秋,刘菲.16~22 nm极紫外光刻物镜工程化设计[J].光学学报,2013, 33(9):0922005.
    [7] Liu F, Li Y Q. Design of multi-mirror optics for industrial extreme ultraviolet lithography[J]. Optical Review, 2013, 20(2):120-126.
    [8] Shen S H, Li Y Q, Jiang J H, et al. Graded multilayer film design for anamorphic magnification EUV lithographic objective[J]. Acta Optica Sinica,2017, 37(8):0822002.沈诗欢,李艳秋,姜家华,等.组合倍率极紫外光刻物镜梯度膜设计[J].光学学报,2017, 37(8):0822002.
    [9] Raychaudhuri A K, Gianoulakis S E, Spence P A,et al. Impact of thermal and structural effects on EUV lithographic performance[J]. Proceedings of SPIE,1998, 3331:124-132.
    [10] Li Y Q, Ota K, Murakami K. Thermal and structural deformation and its impact on optical performance of projection optics for extreme ultraviolet lithography[J].Journal of Vacuum Science&Technology B:Microelectronics and Nanometer Structures, 2003,21(1):127-129.
    [11] Yang G H, Li Y Q. Thermal and structural deformation of projection optics and its influence on optical imaging performance for 22 nm extreme ultraviolet lithography[J]. Acta Optica Sinica, 2012,32(3):0322005.杨光华,李艳秋.22 nm极紫外光刻物镜热和结构变形及其对成像性能影响[J].光学学报, 2012, 32(3):0322005.
    [12] Pirati A, Peeters R, Smith D, et al. EUV lithography performance for manufacturing:status and outlook[J]. Proceedings of SPIE, 2016, 9776:97760A.
    [13] Lowisch M, Kuerz P, Mann H J, et al. Optics for EUV production[J]. Proceedings of SPIE, 2010,7636:763603.
    [14] Cao Z, Li Y Q, Sun Y Y. Compensator selection and accuracy analysis for extreme ultraviolet lithographic objective[J]. Acta Optica Sinica, 2015, 35(12):1211003.曹振,李艳秋,孙圆圆.极紫外光刻物镜补偿器的选择及定位精度分析[J].光学学报,2015, 35(12):1211003.
    [15] Shiraishi M. Surface-corrected multilayerfilm mirrors with protected reflective surfaces, exposure systems comprising same, and associated methods:0204861A1[P]. 2008-08-28.
    [16] Folta J A, Bajt S, Barbee T W, et al. Advances in multilayer reflective coatings for extreme ultraviolet lithography[J]. Proceedings of SPIE, 1999, 3676:702-710.
    [17] Frommeyer A, Morrison G F, Keller W, et al.Optical subassembly and projection objective in semiconductor lithography:US7448763B2[P]. 2008-12-11.
    [18] Jasthi B K, Arbegast W J, Howard S M. Thermal expansion coefficient and mechanical properties of friction stir welded Invar(Fe-36%Ni)[J]. Journal of Materials Engineering and Performance, 2009,18(7):925-934.
    [19] Peeters R, Lok S, Alphen E, et al. ASML's NXE platform performance and volume introduction[J].Proceedings of SPIE, 2013, 8679:86791F.
    [20] Sasian J M, Descour M R. Power distribution and symmetry in lens system[J]. Optical Engineering,1998, 37(3):1001-1004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700