用户名: 密码: 验证码:
Effects of nanobubble and hydrodynamic parameters on coarse quartz flotation
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of nanobubble and hydrodynamic parameters on coarse quartz flotation
  • 作者:Sabereh ; Nazari ; Sied ; Ziaedin ; Shafaei ; Mahdi ; Gharabaghi ; Rahman ; Ahmadi ; Behzad ; Shahbazi ; Fan ; Maoming
  • 英文作者:Sabereh Nazari;Sied Ziaedin Shafaei;Mahdi Gharabaghi;Rahman Ahmadi;Behzad Shahbazi;Fan Maoming;School of Mining Engineering, College of Engineering, University of Tehran;Department of Mining Engineering, Imam Khomeini International University;Mining Engineering Department, Tarbiat Modares University;EFD,Eriez Manufacturing Co.;
  • 英文关键词:Flotation;;Nanobubbles;;Coarse particle;;Quartz;;Hydrodynamic parameters
  • 中文刊名:ZHKD
  • 英文刊名:矿业科学技术(英文版)
  • 机构:School of Mining Engineering, College of Engineering, University of Tehran;Department of Mining Engineering, Imam Khomeini International University;Mining Engineering Department, Tarbiat Modares University;EFD, Eriez Manufacturing Co.;
  • 出版日期:2019-03-11
  • 出版单位:International Journal of Mining Science and Technology
  • 年:2019
  • 期:v.29
  • 语种:英文;
  • 页:ZHKD201902015
  • 页数:7
  • CN:02
  • ISSN:32-1827/TD
  • 分类号:140-146
摘要
Quartz, the second most abundant mineral in the earth's crust, is a gangue mineral in practically every flotation process. Coarse quartz flotation has been a long standing problem in various mineral processing plants to reduce milling cost and increase valuable mineral recovery. Based on this, the effects of nanobubbles(NBs) and hydrodynamic parameters on coarse quartz particle flotation were systematically investigated. Mechanical flotation experiments were carried out using the 7 cm and 9 cm diameter impellers in order to produce different hydrodynamic conditions. 900–1300 rpm impeller speeds were used for the 7 cm diameter impeller and 554–786 rpm for the 9 cm diameter impeller. The results show that the presence of NBs increased the flotation recovery of à425 + 106 lm quartz by up to 21%. For the7 cm diameter impeller, the maximum flotation recoveries of 86.4% and 98% were obtained in the absence and presence of NBs at Reynolds number(Re) of 81,000 and 66,000, respectively. For the 9 cm diameter impeller, the maximum recoveries of 86.3% and 97.5% were obtained in the absence and presence of NBs at Re of 90,000 and 75,000, respectively. NBs increased the flotation rate constant up to 36%.
        Quartz, the second most abundant mineral in the earth's crust, is a gangue mineral in practically every flotation process. Coarse quartz flotation has been a long standing problem in various mineral processing plants to reduce milling cost and increase valuable mineral recovery. Based on this, the effects of nanobubbles(NBs) and hydrodynamic parameters on coarse quartz particle flotation were systematically investigated. Mechanical flotation experiments were carried out using the 7 cm and 9 cm diameter impellers in order to produce different hydrodynamic conditions. 900–1300 rpm impeller speeds were used for the 7 cm diameter impeller and 554–786 rpm for the 9 cm diameter impeller. The results show that the presence of NBs increased the flotation recovery of à425 + 106 lm quartz by up to 21%. For the7 cm diameter impeller, the maximum flotation recoveries of 86.4% and 98% were obtained in the absence and presence of NBs at Reynolds number(Re) of 81,000 and 66,000, respectively. For the 9 cm diameter impeller, the maximum recoveries of 86.3% and 97.5% were obtained in the absence and presence of NBs at Re of 90,000 and 75,000, respectively. NBs increased the flotation rate constant up to 36%.
引文
[1]Cilek E,Yilmazer B.Effects of hydrodynamic parameters on entrainment and flotation performance.Miner Eng 2003;16(8):745-56.
    [2]Kohmuench J,Christodoulou L,Fan M,Mankosa M,Luttrell G.Advancements in coarse and fine particle flotation.Proc of the 42nd annu Canadian miner processors operators conf..Ontario:Canadian Mineral Processors;2010.p.55-69.
    [3]Zawala J,Karaguzel C,Wiertel A,Sahbaz O,Malysa K.Kinetics of the bubble attachment and quartz flotation in mixed solutions of cationic and non-ionic surface-active substances.Colloids Surf A Physicochem Eng Asp2017;523:118-26.
    [4]Wyslouzil HE,Kohmuench J,Christodoulou L,Fan M.Coarse and fine particle flotation.Adv in miner process and technol&mineralogy.Montreal:The Metall Soc of CIM Publisher;2009.p.265-76.
    [5]Fan M,Tao D.A study on picobubble enhanced coarse phosphate froth flotation.Sep Sci Technol 2008;43(1):1-10.
    [6]Fan M,Tao D,Zhao YM,Honaker R.Effect of nanobubbles on the flotation of different sizes of coal particle.J Miner Metall Process 2013;30(3):157-61.
    [7]Awatey B,Thanasekaran H,Kohmuench JN,Skinner W,Zanin M.Optimization of operating parameters for coarse sphalerite flotation in the HydroFloat fluidised-bed separator.Miner Eng 2013;50:99-105.
    [8]Fan M,Tao D,Honaker R,Luo ZF.Nanobubble generation and its application in froth flotation(Part I):nanobubble generation and its effects on the properties of microbubble and millimeter scale bubble solutions.J Min Sci Technol2010;20(1):1-19.
    [9]Fan M,Tao D,Honaker R,Luo ZF.Nanobubble generation and its application in froth flotation(Part II):fundamental study and theoretical analysis.J Min Sci Technol 2010;20(2):159-77.
    [10]Fan M,Tao D,Honaker R,Luo ZF.Nanobubble generation and its application in froth flotation(Part III):specially designed laboratory scale column flotation of phosphate.J Min Sci Technol 2010;20(3):317-38.
    [11]Fan M,Tao D,Honaker R,Luo ZF.Nanobubble generation and its application in froth flotation(Part IV):mechanical cells and specially designed column flotation of coal.J Min Sci Technol 2010;20(5):641-71.
    [12]Calgaroto S,Wilberg K,Rubio J.On the nanobubbles interfacial properties and future applications in flotation.Miner Eng 2014;60:33-40.
    [13]Zargarzadeh L,Elliott J.Thermodynamics of surface nanobubbles.Langmuir2016;32:11309-20.
    [14]Fan M,Zhao YM,Tao D.Fundamental studies of nanobubble generation and applications in flotation.Separation technologies for minerals,coal,and earth resources.Littleton(CO):Soc for Min,Metall,and Explor;2012.p.457-69.
    [15]Fan M,Tao D.Effect of nanobubbles on flotation of different density coal.Proc of 143rd SME annu meeting and exhibit.Salt Lake City,USA.Littleton(CO):Soc for Min,Metall,and Explor;2014.
    [16]Fan M,Tao D.A pilot-scale study of effects of nanobubbles on phosphate flotation.In:Zhang P,Miller JD,El-Shall HE,editors.Beneficiation of phosphates:new thought,new technology,new development.Littleton(CO):Soc for Min,Metall,and Explor;2012.p.21-31.
    [17]Ahmadi R,Darban AK,Abdollahy M,Fan M.Nano-microbubble flotation of fine and ultrafine chalcopyrite particles.J Min Sci Technol 2014;24:559-66.
    [18]Sobhy A,Tao D.Nanobubble column flotation of fine coal particles and associated fundamentals.Int J Miner Process 2013;124:109-16.
    [19]Calgaroto S,Azevedo A,Rubio J.Flotation of quartz particles assisted by nanobubbles.Int J Miner Process 2015;137:64-70.
    [20]Calgaroto S,Azevedo A,Rubio J.Separation of amine-insoluble species by flotation with nano and microbubbles.Miner Eng 2016;89:24-9.
    [21]Rulyov N,Nessipbay T,Dulatbek T,Larissa S,Zhamikhan K.Effect of microbubbles as flotation carriers on fine sulphide ore beneficiation.Miner Process Extr Metall 2017;127(3):1-7.
    [22]Etchepare R,Oliveira H,Azevedo A,Rubio J.Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles.Sep Purif Technol 2017;186:326-32.
    [23]Kosior D,Kowalczuk PB,Zawala J.Surface roughness in bubble attachment and flotation of highly hydrophobic solids in presence of frother-experiment and simulations.Physicochem Probl Mi 2018;54(1):63-72.
    [24]Hashim MA,Mukhopadhyay S,Gupta BS,Sahu JN.Application of colloidal gas aphrons for pollution remediation.J Chem Technol Biotechnol2012;87:305-24.
    [25]Pourkarimi Z,Rezai B,Noaparast M.Effective parameters on generation of nanobubbles by cavitation method for froth flotation applications.Physicochem Probl MI 2017;53(2):920-42.
    [26]Bagherzadeh SA,Alavi S,Ripmeester J,Englezos P.Formation of methane nanobubbles during hydrate decomposition and their effect on hydrate growth.J Chem Phys 2015;142.214701-1-8.
    [27]Uchida T,Oshita S,Ohmori M,Tsuno T,Soejima K,Shinozaki S,et al.Transmission electron microscopic observations of nanobubbles and their capture impurities in wastewater.Nanoscale Res Lett 2011;6.295-1-9.
    [28]Li D,Yin WZ,Liu Q,Cao SH,Sun QY,Zhao C,et al.Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation.Miner Eng 2017;114:74-81.
    [29]Farmer A,Collings A,Jameson G.Effect of ultrasound on surface cleaning of silica particles.Int J Miner Process 2000;60(2):101-13.
    [30]Luo L,White HS.Electrogeneration of single nanobubbles at sub-50-nm-radius platinum nanodisk electrodes.Langmuir 2013;29(35):11169-75.
    [31]Peng H,Hampton MA,Nguyen AV.Nanobubbles do not sit alone at the solidliquid interface.Langmuir 2013;29(20):6123-30.
    [32]Zhou ZA,Xu Z,Finch JA,Hu H,Rao SR.Role of hydrodynamic cavitation in fine particle flotation.Int J Miner Process 1997;51:139-49.
    [33]Seddon JR,Lohse D.Nanobubbles and micropancakes:gaseous domains on immersed substrates.J Phys Condens Matter 2011;23(13):133001.
    [34]Van LM,Seddon J.Surface nanobubbles as a function of gas type.Langmuir2011;27(14):8694-9.
    [35]Dai Z,Fornasiero D,Ralston J.Particle-bubble collision models-a review.Adv Colloid Interf Sci 2000;85(2):231-56.
    [36]Shahbazi B,Rezai B,Chelgani S,Koleini SJ,Noaparast M.Estimation of diameter and surface area flux of bubbles based on operational gas dispersion parameters by using regression and ANFIS.J Min Sci Technol 2013;23(3):343-8.
    [37]Shahbazi B,Rezai B,Koleini SJ.Effect of dimensionless hydrodynamic parameters on coarse particles flotation.Asian J Chem 2008;20(3):2180.
    [38]Shahbazi B,Rezai B,Koleini SJ,Noaparast M.The effect of bubble surface area flux on flotation efficiency of pyrite particles.Iran J Chem Chem Eng 2013;32(2):109-18.
    [39]Vazirizadeh A,Bouchard J,Del VR.On the relationship between hydrodynamic characteristics and the kinetics of column flotation.Part I:modeling the gas dispersion.Miner Eng 2015;74:207-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700