用户名: 密码: 验证码:
基于响应面法的铜电解精炼槽电压预测模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cell Voltage Prediction Model of Copper Electrorefining Based on Response Surface Methodology
  • 作者:任兵芝 ; 夏文堂 ; 王宏丹 ; 向威 ; 王磊
  • 英文作者:REN Bingzhi;XIA Wentang;WANG Hongdan;XIANG Wei;WANG Lei;School of Metallurgical and Materials Engineering,Chongqing University of Science and Technology;
  • 关键词:铜电解精炼 ; 能耗 ; 响应面法 ; 槽电压 ; Plackett-Burman设计
  • 英文关键词:copper electrorefining;;power consumption;;response surface methodology;;cell voltage;;Plackett-Burman design
  • 中文刊名:YOUS
  • 英文刊名:Nonferrous Metals Engineering
  • 机构:重庆科技学院冶金与材料工程学院;
  • 出版日期:2019-02-25
  • 出版单位:有色金属工程
  • 年:2019
  • 期:v.9
  • 基金:国家自然科学基金资助项目(51674057);; 重庆市教委科学技术研究项目(KJ1601326,KJ1713343);; 重庆市基础科学与前沿技术研究专项(cstc2016jcyjA0142,cstc2017jcyjAX0236)~~
  • 语种:中文;
  • 页:YOUS201902011
  • 页数:6
  • CN:02
  • ISSN:10-1004/TF
  • 分类号:64-69
摘要
在铜电解精炼过程中,最主要的能耗是直流电耗,而槽电压对直流电耗的影响最大。针对铜电解精炼过程,首先采用Plackett-Burman实验设计法筛选出对铜电解精炼槽电压具有显著影响的4个因素,其显著性次序为:电解液温度>电流密度>阴阳极间隙>硫酸浓度;然后根据中心复合实验设计(Central composite design,CCD)原理设计的4因素5水平实验及响应面法(Response surface methodology,RSM)对影响铜电解精炼槽电压的显著因素做进一步优化,建立了多元二次回归方程拟合模型。在电流密度为280A/m2的前提下,得到槽电压最低的工艺条件为:电解液温度60℃、硫酸浓度210g/L、阴阳极间隙20mm。实验表明,基于响应面法建立的预测模型是准确可靠的,对降低铜电解精炼能耗具有良好的指导作用。
        In the copper electrorefining process,the main power consumption is DC power consumption,while cell voltage has the greatest impact on DC power consumption.The Plackett-Burman experimental design method was firstly used to screen out four factors that have significant impacts on the cell voltage of copper electrorefining.The order of their significance is:electrolyte temperature>current density>inter-electrode spacing> H2 SO4 concentration.Then,based on the central composite design(CCD)principle,the four-factor five-level experiment and response surface methodology(RSM)was applied to optimize the significant influencing factors of copper electrorefining cell voltage.A multivariate quadratic regression equation fitting model was established.Under the current density of 280 A/m2,the lowest cell voltage conditions were the electrolyte temperature of 60 ℃,H2 SO4 concentration of 210 g/L and inter-electrode spacing of 20 mm calculated from the regression model.Experiments show that the prediction model based on RSM is accurate and reliable,which has a good guidance to reduce the power consumption of copper electrorefining.
引文
[1]张春发.铜的电解精炼工艺综述[J].资源再生,2011,10(5):48-52.ZHANG Chunfa.Review of copper electrorefining process[J].Resource Recycling,2011,10(5):48-52.
    [2]高秋平.降低铜电解精炼直流电消耗的途径[J].江苏冶金,2000,28(4):77-79.GAO Qiuping.Ways to reduce DC power consumption in copper electrorefining[J].Jiangsu Metallurgy,2000,28(4):77-79.
    [3]梁文林.铜电解过程中的节能措施与效益[J].有色冶金节能,2004,21(3):4-5LIANG Wenlin.The energy saving measures and benefits of copper electrolytic process[J].Energy Saving of Non-ferrous Metallurgy,2004,21(3):4-5.
    [4]别良伟.铜电解精炼过程中的节能措施与实践[J].铜业工程,2011,28(1):43-45.BIE Liangwei.Energy saving measures and practice in copper electrolytic refining process[J].Copper Engineering,2011,28(1):43-45.
    [5]林欣,陈崇善.提高铜电解电流效率的生产实践[J].铜业工程,2014,31(2):23-25.LIN Xin,CHEN Chongshan.Practice of increasing current efficiency in copper electrolysis[J].Copper Engineering,2014,31(2):23-25.
    [6]宣善伦.高电流密度下生产阴极铜的实践[J].中国有色冶金,2007,36(6):27-29.XUAN Shanlun.Production practice for copper electrolysis under high current density[J].China Nonferrous Metallurgy,2007,36(6):27-29.
    [7]周松林.高强化铜电解精炼新工艺与生产实践[J].有色金属(冶炼部分),2013,(2):1-4.ZHOU Songlin.Electrolytic refining technology of high strengthen copper and production practice[J].Nonferrous Metals(Extractive Metallurgy),2013(2):1-4.
    [8]吴继烈,FILZWIESER A.高电流密度铜电解技术的理论及实践[J].有色金属(冶炼部分),2014(2):13-17.WU Jilie,FILZWIESER A.Theory and plant practice of high electric current density for copper electrolysis[J].Nonferrous Metals(Extractive Metallurgy),2014(2):13-17.
    [9]王成国,许卫,史建远.降低铜电解直流电单耗的实践[J].中国有色冶金,2009,38(5):23-26.WANG Chengguo,XU Wei,SHI Jianyuan.Practice of decreasing DC power consumption of electro-refining[J].China Nonferrous Metallurgy,2009,38(5):23-26.
    [10]王刚,柳智.降低铜电解精炼过程中的直流电耗[J].山西冶金,2014,41(3):58-60.WANG Gang,LIU Zhi.Current consumption reduction in copper electrolytic refining[J].Shanxi Metallurgy,2014,41(3):58-60.
    [11]KHOURAIBCHIA Y.Improving the fundamental understanding of copper electrowinning[D].Logan:University of Utah,2009.
    [12]孙亚峰,任兵芝,王宏丹,等.工艺条件对铜电解精炼过程直流电耗的影响[J].有色金属(冶炼部分),2018(6):5-8.SUN Yafeng,REN Bingzhi,WANG Hongdan,et al.Effect of process conditions on power consumption of copper electrorefining[J].Nonferrous Metals(Extractive Metallurgy),2018(6):5-8.
    [13]冯进,曾晓雄,李春阳.响应面法优化蓝莓叶多酚提取工艺[J].食品科学,2013,34(4):59-64.FENG Jin,ZENG Xiaoxiong,LI Chunyang.Optimization of extraction process for polyphenols from blueberry leaves by response surface methodology[J].Food Science,2013,34(4):59-64.
    [14]徐涛,赵留成,李绍英.响应面法优化金精矿中性焙烧产物的自浸金过程[J].中国有色金属学报,2017,27(3):629-636.XU Tao,ZHAO Liucheng,LI Shaoying.Gold selfleaching optimization of neutral roasted products of gold concentrate by response surface methodology[J].The Chinese Journal of Nonferrous Metals,2017,27(3):629-636.
    [15]廖亚龙,周娟,黄斐荣,等.响应曲面法优化复杂硫化铜矿选择性浸出工艺[J].中国有色金属学报,2016,26(1):164-172.LIAO Yalong,ZHOU Juan,HUANG Feirong,et al.Optimization of selective leaching technology of complex sulfide copper ore by response surface methodology[J].The Chinese Journal of Nonferrous Metals,2016,26(1):164-172.
    [16]严浩,彭文杰,王志兴,等.响应曲面法优化电解锰阳极渣还原浸出工艺[J].中国有色金属学报,2013,23(2):528-534.YAN Hao,PENG Wenjie,WANG Zhixing,et al.Reductive leaching technology of manganese anode slag optimized by response surface methodology[J].The Chinese Journal of Nonferrous Metals,2013,23(2):528-534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700