用户名: 密码: 验证码:
火焰法制备碳纳米管研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in flame synthesis of carbon nanotubes
  • 作者:韩伟伟 ; 汪鹏 ; 卫言 ; 楚化强 ; 孙勇 ; 曹文健
  • 英文作者:Weiwei HAN;Peng WANG;Yan WEI;Huaqiang CHU;Yong SUN;Wenjian CAO;School of Energy and Environment, Anhui University of Technology;School of Materials Science and Engineering, Anhui University of Technology;
  • 关键词:碳纳米管 ; 火焰法 ; 生长机理
  • 英文关键词:carbon nanotubes;;flame method;;growth mechanism
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:安徽工业大学能源与环境学院;安徽工业大学材料科学与工程学院;
  • 出版日期:2018-08-25 14:56
  • 出版单位:过程工程学报
  • 年:2019
  • 期:v.19
  • 基金:国家重点研发计划资助项目(编号:2017YFB0601805);; 国家自然科学基金资助项目(编号:51676002);; 高校优秀青年人才支持计划资助项目(编号:gxyqZD201830)
  • 语种:中文;
  • 页:HGYJ201901003
  • 页数:11
  • CN:01
  • ISSN:11-4541/TQ
  • 分类号:10-20
摘要
火焰法是近20年来兴起的一种新颖、高能效、低成本的碳纳米管制备方法。火焰法能同时提供制备碳纳米管所需的碳源和热源,具有大规模制备碳纳米管的潜力。由于火焰中环境极其复杂,控制火焰中碳纳米管的合成仍是巨大的挑战。本工作介绍了碳纳米管的结构及其性能,综述了扩散火焰(同轴扩散火焰、反扩散火焰和对冲扩散火焰)和预混火焰(单面滞止火焰和双面滞止火焰)制备碳纳米管的研究进展,并对碳纳米管的vapor-liquid-solid、顶部和底部及空心和实心生长机理作了简要阐述,介绍了本课题组基于甲烷/空气同轴射流火焰制备碳纳米管的研究进展。分析表明,金属镍起催化作用,催化剂颗粒包覆在碳纳米管内部,火焰合成的碳纳米管基于vapor-liquid-solid生长机制,碳纳米管直径为50~90 nm,平均直径为65 nm。对火焰法制备碳纳米管的发展方向进行了展望。
        Flame synthesis of carbon nanotubes is a novel, energy efficient and low cost method. The flame method can simultaneously provide the carbon source and heat source needed for the preparation of carbon nanotubes, and has the potential to prepare carbon nanotubes on a large scale, over the existing conventional methods. Tremendous progress has been achieved during the past 20 years on not only improving the yields of carbon nanotubes and move progressively towards their mass production, but also on gaining a profound fundamental understanding of the nucleation and the growth processes. However, controlling the synthesis of carbon nanotubes in the flame is still a huge challenge, due to the extremely complex environment. The purpose of the present review is not to list all the experiments reported in the literature, but rather to identify trends and provide a comprehensive summary on the role of selected parameters in the flame. In this work, the structure and properties of carbon nanotubes were introduced firstly, then the research progress of carbon nanotubes by diffusion and premixed flame, including co-flow diffusion flame, inverse diffusion flame, counter diffusion flame, single-face wall stagnation flame and double-face wall stagnation flame were summarized, and the vapor-liquid-solid, tip and base, hollow and solid growth mechanisms of carbon nanotubes were briefly described. The synthesis of carbon nanotubes based on a methane/air coaxial jet diffusion flame by our group was also introduced. Through SEM, XRD and TEM characterization, it was proved that metallic nickel played a catalytic role. The catalyst particles were coated inside the carbon nanotubes, and the flame synthesized carbon nanotubes were based on a vapor-liquid-solid growth mechanism. The diameter of carbon nanotubes was distributed between 50 nm and 90 nm with an average diameter of 65 nm. Finally, the research direction of the preparation of carbon nanotubes by flame method was prospected.
引文
[1]Kroto H W,Heath J R,O'Brien S C,et al.C60:buckminsterfullerene[J].Nature,1985,318(6042):162-163.
    [2]Iijima S.Helical Microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
    [3]邹勇,刘吉平,尹作栋.碳纳米管载钴氧化物催化剂制备及其分解N2O研究[J].过程工程学报,2004,4(增刊1):333-337.Zou Y,Liu J P,Yin Z D.Studies on preparation of carbon nanotube supported cobalt oxide and N2O decomposition reaction[J].The Chinese Journal of Process Engineering,2004,4(S1):333-337.
    [4]姚运金,张素平,颜涌捷.多壁碳纳米管的球磨处理对其吸附储氢性能的影响[J].过程工程学报,2006,6(5):837-840.Yao Y J,Zhang S P,Yan Y J.Ball milling process and its effect on hydrogen adsorption storage of MWNTS[J].The Chinese Journal of Process Engineering,2006,6(5):837-840.
    [5]Hughes M,Chen G Z,Shaffer M S P,et al.Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole[J].Chemistry of Materials,2002,14(4):1610-1613.
    [6]Rui X H,Parasuraman A,Liu W,et al.Functionalized single-walled carbon nanotubes with enhanced electrocatalytic activity for Br-/Br3-redox reactions in vanadium bromide redox flow batteries[J].Carbon,2013,64(9):464-471.
    [7]Hamzah N,Yasin M F M,Yusop M Z M,et al.Rapid production of carbon nanotubes:a review on advancement in growth control and morphology manipulations of flame synthesis[J].Journal of Materials Chemistry A,2017,5:25144-25170.
    [8]Hutchison J L,Kiselev N A,Krinichnaya E P,et al.Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method[J].Carbon,2001,39(5):761-770.
    [9]Shi Z,Lian Y,Zhou X,et al.Mass-production of single-wall carbon nanotubes by arc discharge method[J].Carbon,1999,37(9):1449-1453.
    [10]Cassell A M,Raymakers J A,Jing K,et al.Large scale CVDsynthesis of single-walled carbon nanotubes[J].Journal of Physical Chemistry B,1999,103(31):397-403.
    [11]Yan H,Li Q,Zhang J,et al.Possible tactics to improve the growth of single-walled carbon nanotubes by chemical vapor deposition[J].Carbon,2002,40(14):2693-2698.
    [12]Puretzky A A,Geohegan D B,Fan X,et al.Dynamics of single-wall carbon nanotube synthesis by laser vaporization[J].Applied Physics A,2000,70(2):153-160.
    [13]Height M J,Howard J B,Tester J W,et al.Flame synthesis of singlewalled carbon nanotubes[J].Symposium(International)on Combustion,2004,30(2):2537-2543.
    [14]Wal R L V,Ticich T M,Curtis V E.Diffusion flame synthesis of single-walled carbon nanotubes[J].Chemical Physics Letters,2000,323(3):217-223.
    [15]于溯源,于晓丽,杨小勇,等.甲烷受控扩散火焰合成碳纳米管的实验研究[J].热科学与技术,2007,6(4):340-345.Yu S Y,Yu X L,Yang X Y,et al.Experimental research on synthesis of multi-walled carbon nanotubes by methane-air controlleddiffusing flame[J].Journal of Thermal Science and Technology,2007,6(4):340-345.
    [16]潘剑锋,杨辉,张倚,等.乙炔/甲烷预混燃烧合成碳纳米管的试验研究[J].热科学与技术,2014,13(4):365-369.Pan J F,Yang H,Zhang Y,et al.Experimental study of carbon nanotubes synthesized by acetylene/methane premixed flame[J].Journal of Thermal Science and Technology,2014,13(4):365-369.
    [17]Wal R L V,Berger G M,Hall L J.Single-walled carbon nanotube synthesis via a multi-stage flame configuration[J].Journal of Physical Chemistry B,2002,106(14):3564-3567.
    [18]Wal R L V,Ticich T M,Curtis V E.Substrate-support interactions in metal-catalyzed carbon nanofiber growth[J].Carbon,2001,39(15):2277-2289.
    [19]Arana C P,Puri I K,Sen S.Catalyst influence on the flame synthesis of aligned carbon nanotubes and nanofibers[J].Proceedings of the Combustion Institute,2005,30(2):2553-2560.
    [20]Hu W,Yuan L,Chen Z,et al.Fabrication and characterization of vertically aligned carbon nanotubes on silicon substrates using porous alumina nanotemplates[J].Journal of Nanoscience and Nanotechnology,2002,2(2):203-207.
    [21]Mohd Syahir M S,Chong C T.Synthesis of carbon nanotubes from rich premixed propane/air flame[J].Applied Mechanics and Materials,2014,699:136-140.
    [22]Liu T C,Li Y Y.Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method[J].Carbon,2006,44(10):2045-2050.
    [23]Motojima S,Chen Q.Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition[J].Journal of Applied Physics,1999,85(7):3919-3921.
    [24]Lee G W,Jurng J,Hwang J.Formation of Ni-catalyzed multiwalled carbon nanotubes and nanofibers on a substrate using an ethylene inverse diffusion flame[J].Combustion and Flame,2004,139(1/2):167-175.
    [25]Hou S S,Huang W C,Lin T H.Flame synthesis of carbon nanostructures using mixed fuel in oxygen-enriched environment[J].Journal of Nanoparticle Research,2012,14(11):1-11.
    [26]Merchan-Merchan W,Saveliev A V,Kennedy L A.Carbon nanostructures in opposed-flow methane oxy-flames[J].Combustion Science and Technology,2003,175(12):2217-2236.
    [27]Merchan-Merchan W,Saveliev A V,Kennedy L A.High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control[J].Carbon,2004,42(3):599-608.
    [28]Memon N K,Xu F,Sun G,et al.Flame synthesis of carbon nanotubes and few-layer graphene on metal-oxide spinel powders[J].Carbon,2013,63(2):478-486.
    [29]于晓丽,杨小勇,叶萍,等.乙炔/空气预混火焰法合成多壁碳纳米管的实验研究[J].工程热物理学报,2009,30(1):165-168.Yu X L,Yang X Y,Ye P,et al.Experimental study on multi-walled carbon nanotubes synthesized by acetylene-air premixed flame[J].Journal of Engineering Thermophysics,2009,30(1):165-168.
    [30]Duan H M,Mckinnon J T.Nanoclusters produced in flames[J].Journal of Physical Chemistry,1994,98(49):12815-12818.
    [31]Hall B,Zhuo C,Levendis Y A,et al.Influence of the fuel structure on the flame synthesis of carbon nanomaterials[J].Carbon,2011,49(11):3412-3423.
    [32]Nakazawa S,Yokomori T,Mizomoto M.Flame synthesis of carbon nanotubes in a wall stagnation flow[J].Chemical Physics Letters,2005,403(1):158-162.
    [33]Sang K W,Hong Y T,Kwon O C.Flame synthesis of carbon nanotubes using a double-faced wall stagnation flow burner[J].Carbon,2009,47(3):912-916.
    [34]Sang K W,Hong Y T,Kwon O C.Flame-synthesis limits and selfcatalytic behavior of carbon nanotubes using a double-faced wall stagnation flow burner[J].Combustion and Flame,2009,156(10):1983-1992.
    [35]Chong C T,Tan W H,Lee S L,et al.Morphology and growth of carbon nanotubes catalytically synthesized by premixed hydrocarbon-rich flames[J].Materials Chemistry and Physics,2017,197:246-255.
    [36]Hernadi K,Siska A,Thiên-Nga L,et al.Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes[J].Solid State Ionics,2001,141/142:203-209.
    [37]Tan W H,Lee S L,Chong C T.TEM and XRD analysis of carbon nanotubes synthesised from flame[J].Key Engineering Materials,2017,723:470-475.
    [38]张晓峰,李金铃,于溯源.燃烧法合成碳纳米管[J].过程工程学报,2004,4(增刊1):496-501.Zhang X F,Li J L,Yu S Y.Flame synthesis of carbon nanotubes[J].The Chinese Journal of Process Engineering,2004,4(S1):496-501.
    [39]Baker R T K,Harris P S,Thomas R B,et al.Formation of filamentous carbon from iron,cobalt and chromium catalyzed decomposition of acetylene[J].Journal of Catalysis,1973,30(1):86-95.
    [40]Baker R T K.The formation of filamentous carbon[J].Carbon,1978,21(5):463-468.
    [41]Yuan L,Li T,Saito K.Growth mechanism of carbon nanotubes in methane diffusion flames[J].Carbon,2003,41(10):1889-1896.
    [42]刘远超,孙保民,丁兆勇,等.V型热解火焰合成碳纳米管的催化剂选择与分析[J].工程热物理学报,2009,30(4):703-706.Liu Y C,Sun B M,Ding Z Y,et al.Catalyst selection and analysis in V-type pyrolysis flame synthesis carbon nanotubes[J].Journal of Engineering Thermophysics,2009,30(4):703-706.
    [43]Amelinckx S,Zhang X B,Bernaerts D,et al.A formation mechanism for catalytically grown helix-shaped graphite nanotubes[J].Science,1994,265(5172):635-639.
    [44]Baker R T K.Catalytic growth of carbon filaments[J].Carbon,1989,27(3):315-323.
    [45]Merchan-Merchan W,Saveliev A V,Kennedy L,et al.Combustion synthesis of carbon nanotubes and related nanostructures[J].Progress in Energy and Combustion Science,2010,36(6):696-727.
    [46]Pan C,Liu Y,Cao F,et al.Synthesis and growth mechanism of carbon nanotubes and nanofibers from ethanol flames[J].Micron,2004,35(6):461-468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700