用户名: 密码: 验证码:
基于地统计学分析的太湖颗粒态和溶解态氮、磷营养盐时空分布特征及来源分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal-spatial Distribution of Nitrogen and Phosphorus Nutrients in Lake Taihu Based on Geostatistical Analysis
  • 作者:吕伟伟 ; 姚昕 ; 张保华 ; 高光 ; 邵克强
  • 英文作者:L Wei-wei;YAO Xin;ZHANG Bao-hua;GAO Guang;SHAO Ke-qiang;School of Environment and Planning,University of Liaocheng;State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;
  • 关键词:颗粒态氮磷 ; 溶解态氮磷 ; 时空分布 ; 形态组成 ; 地统计学
  • 英文关键词:particulate nitrogen and phosphorus;;dissolved nitrogen and phosphorus;;the temporal and spatial variation;;composition;;geostatistics
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:聊城大学环境与规划学院;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;
  • 出版日期:2018-09-12 13:26
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(41571462,41501101,41301544);; 江苏省自然科学基金项目(BK20151059);; 湖泊与环境国家重点实验室开放基金项目(2018SKL004)
  • 语种:中文;
  • 页:HJKZ201902011
  • 页数:13
  • CN:02
  • ISSN:11-1895/X
  • 分类号:80-92
摘要
研究水体氮、磷营养盐的空间变异性及时空动态变化,有助于人们深入认识和了解氮、磷营养盐的变化对藻类生长繁殖的影响,对于治理富营养化水体中藻类的暴发性增长具有重要意义.基于地统计学分析方法,以太湖2014年8月~2015年5月夏、秋、冬、春四季为研究时段,分析了草、藻型等不同生态类型湖区颗粒态和溶解态氮、磷营养盐的来源以及赋存形态,营养盐限制类型的时空分布特征,并探寻其时空变化原因.结果表明:(1)时空分布上,水体中氮、磷含量整体表现为冬季高于其他季节,呈现由西北湖区向东南湖区递减的特征;颗粒态氮、磷与叶绿素a含量则表现为夏季高于其他季节,冬季高值区均位于南部湖区,其余季节高值区集中在西北湖区.(2)随季节变化,太湖草、藻型湖区氮磷营养盐形态组成发生了大的变化;藻型湖区由冬季以硝酸盐氮和有机磷为主,转变为其余季节以颗粒态氮磷为主,而草型湖区由冬季以颗粒态氮磷为主,转变为其余季节以氨氮和有机氮磷为主.(3)营养结构上,藻型湖区总氮/总磷比值由秋冬季节大于16,降低为夏春季节的小于16;而草型湖区却由秋冬季节小于16,升高为夏春季节大于16.溶解态氮磷比在藻型湖区的空间变化规律与总氮/总磷比值一致,而在草型湖区溶解态氮磷比由秋季小于16,升高为夏、冬、春季节大于16.颗粒态氮磷比时空变化均不显著(P> 0. 05),各季节藻型湖区颗粒态氮磷比值均小于16,草型湖区均大于16.
        It is of great significance to investigate the spatio-temporal variation in nitrogen and phosphorus nutrients as a mechanism for controlling the sudden increase of algae in eutrophic water. Based on the geostatistical analysis,we studied the sources and occurring forms of nitrogen and phosphorus in different areas of Lake Taihu—a large shallow and eutrophic lake in China. We also examined the spatial distribution of the type of nutrient restriction and its reason by monitoring the sites seasonally from August 2014 to May 2015.The results showed that:(1) The concentrations of soluble nitrogen and phosphorus were higher in the winter than in other seasons,and they gradually decreased spatially from the northwest to southeast. The concentrations of particulate nitrogen,phosphorus,and chlorophyll a were highest in the summer,and the high-concentration regions in the winter and other seasons were located in the southern and northwestern parts of the lake,respectively.(2) The composition of nitrogen and phosphorus in algae-and macrophytedominated regions changed substantially with the seasonal change. The algae-dominated regions were dominated by nitrate nitrogen and organic phosphorus in the winter and particulate nitrogen and phosphorus during the other seasons. However,the macrophyte-dominated region was dominated by particulate nitrogen and phosphorus in the winter and ammonia,organic nitrogen,and phosphorus during the other seasons.(3) The ratios of total nitrogen to total phosphorus in the algae-dominated region were greater than 16∶ 1 in the autumn and winter but less than 16∶ 1 in the summer and spring. Meanwhile,the ratios of total nitrogen to total phosphorus in the macrophytedominated region increased from less than 16∶ 1 in the autumn and winter to more than 16∶ 1 in the summer and spring. In the algaedominated region,the spatial variation in the dissolved total nitrogen to total phosphorus ratio was consistent with the ratio of total nitrogen to total phosphorus. In the macrophyte-dominated region,the dissolved total nitrogen to total phosphorus ratio increased from less than 16∶ 1 in the autumn to more than 16∶ 1 in the summer,winter,and spring. The temporal and spatial variation in the ratio of particulate nitrogen to phosphorus was not significant( P > 0. 05),and this ratio was less than and greater than 16 in algae-and macrophyte-dominated regions,respectively.
引文
[1]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595.Kong F X,Gao G. Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes[J]. Acta Ecologica Sinica,2005,25(3):589-595.
    [2]姚昕,张运林,朱广伟,等.湖泊草、藻来源溶解性有机质及其微生物降解的差异[J].环境科学学报,2014,34(3):688-694.Yao X,Zhang Y L,Zhu G W,et al. Different degradation mechanism of dissolved organic matter derived from phytoplankton and macrophytes in Lake Taihu, China[J]. Acta Scientiae Circumstantiae,2014,34(3):688-694.
    [3]吕伟伟,姚昕,张保华,等.太湖颗粒态有机质的荧光特征及环境指示意义[J].环境科学,2018,39(5):2056-2066.LüW W,Yao X,Zhang B H,et al. Fluorescent characteristics and environmental significance of particulate organic matter in Lake Taihu,China[J]. Environmental Science,2018,39(5):2056-2066.
    [4] Xu H,Paerl H W,Qin B Q,et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China[J]. Limnology and Oceanography,2010,55(1):420-432.
    [5]聂泽宇,梁新强,邢波,等.基于氮磷比解析太湖苕溪水体营养现状及应对策略[J].生态学报,2012,32(1):48-55.Nie Z Y,Liang X Q,Xing B,et al. The current water trophic status in Tiaoxi River of Taihu Lake watershed and corresponding coping strategy based on N/P ratio analysis[J]. Acta Ecologica Sinica,2012,32(1):48-55.
    [6]何东,张毅敏,杨飞,等.太湖藻源性颗粒物降解过程中营养盐转化及其生态效应[J].中国环境科学,2016,36(3):899-907.He D,Zhang Y M,Yang F,et al. The transformation of the nutrient in the degradation process of the phytoplankton-derived particulate organic matter and it's ecological effect[J]. China Environmental Science,2016,36(3):899-907.
    [7] Tang X M,Gao G,Chao J Y,et al. Dynamics of organicaggregate-associated bacterial communities and related environmental factors in Lake Taihu,a large eutrophic shallow lake in China[J]. Limnology and Oceanography,2010,55(2):469-480.
    [8] Qin B Q,Zhu G W,Gao G,et al. A drinking water crisis in Lake Taihu, China:linkage to climatic variability and lake management[J]. Environmental Management,2010,45(1):105-112.
    [9] Qin B Q,Xu P Z,Wu Q L,et al. Environmental issues of Lake Taihu,China[J]. Hydrobiologia,2007,581(1):3-14.
    [10] Qin B Q, Li W, Zhu G W, et al. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu(China)[J]. Journal of Hazardous Materials,2015,287:356-363.
    [11] Zhou Y Q,Zhang Y L,Shi K,et al. Lake Taihu,a large,shallow and eutrophic aquatic ecosystem in China serves as a sink for chromophoric dissolved organic matter[J]. Journal of Great Lakes Research,2015,41(2):597-606.
    [12]金相灿,屠清瑛.湖泊富营养化调查规范[M].(第二版).北京:中国环境科学出版社,1990.
    [13]张峰,杜群,葛宏立,等.基于地统计学和CFI样地的浙江省森林碳空间分布研究[J].生态学报,2012,32(16):5275-5286.Zhang F,Du Q,Ge H L,et al. Spatial distribution of forest carbon in Zhejiang Province with geostatistics based on CFI sample plots[J]. Acta Ecologica Sinica,2012,32(16):5275-5286.
    [14] Ozcan A U,Erpul G,Basaran M,et al. Use of USLE/GIS technology integrated with geostatistics to assess soil erosion risk in different land uses of Indagi Mountain Pass—ankr,Turkey[J]. Environmental Geology,2008,53(8):1731-1741.
    [15]曾春阳,唐代生,唐嘉锴.森林立地指数的地统计学空间分析[J].生态学报,2010,30(13):3465-3471.Zeng C Y,Tang D S,Tang J K. Spatial pattern analysis of forest ecosystem site index using geostatistical technology[J]. Acta Ecologica Sinica,2010,30(13):3465-3471.
    [16]车磊,王海起,费涛,等.基于多尺度最小二乘支持向量机优化的克里金插值方法[J].地球信息科学学报,2017,19(8):1001-1010.Che L,Wang H Q,Fei T,et al. Kriging interpolation method optimized by multi-scale least squares support vector machine[J]. Journal of Geo-Information Science,2017,19(8):1001-1010.
    [17]彭景涛,李国胜,傅瓦利,等.青海三江源地区退化草地土壤全氮的时空分异特征[J].环境科学,2012,33(7):2490-2496.Peng J T,Li G S,Fu W L,et al. Temporal-spatial variations of total nitrogen in the degraded grassland of Three-River Headwaters region in Qinghai Province[J]. Environmental Science,2012,33(7):2490-2496.
    [18]符刚,曾强,赵亮,等.基于GIS的天津市饮用水水质健康风险评价[J].环境科学,2015,36(12):4553-4560.Fu G,Zeng Q,Zhao L,et al. Health risk assessment of drinking water quality in Tianjin based on GIS[J]. Environmental Science,2015,36(12):4553-4560.
    [19]王建民,苏巧梅,杜孙稳. Kriging空间插值方法在地表形变监测中的应用[J].中国土地科学,2013,27(12):87-90.Wang J M,Su Q M,Du S W. The Application of kriging spatial interpolation method in monitoring surface deformation[J]. China Land Sciences,2013,27(12):87-90.
    [20]赵科理,傅伟军,叶正钱,等.电子垃圾拆解区土壤重金属空间异质性及分布特征[J].环境科学,2016,37(8):3151-3159.Zhao K L,Fu W J,Ye Z Q,et al. Spatial variation of soil heavy metals in an e-waste dismantling area and their distribution Characteristics[J]. Environmental Science,2016,37(8):3151-3159.
    [21]汪明,武晓飞,李大鹏,等.太湖梅梁湾不同形态磷周年变化规律及藻类响应研究[J].环境科学,2015,36(1):80-86.Wang M,Wu X F,Li D P,et al. Annual variation of different phosphorus forms and response of algae growth in Meiliang Bay of Taihu Lake[J]. Environmental Science,2015,36(1):80-86.
    [22]冯露露,李正魁,周涛.太湖浮游植物和各形态无机氮的时空分布特征[J].湖泊科学,2012,24(5):739-745.Feng L L,Li Z K,Zhou T. Temporal and spatial distributions of phytoplankton and various forms of inorganic nitrogen in Lake Taihu[J]. Journal of Lake Sciences,2012,24(5):739-745.
    [23]朱广伟,秦伯强,张运林,等. 2005─2017年北部太湖水体叶绿素a和营养盐变化及影响因素[J].湖泊科学,2018,30(2):279-295.Zhu G W,Qin B Q,Zhang Y L,et al. Variation and driving factors of nutrients and chlorophyll-a concentrations in northern region of Lake Taihu,China,2005-2017[J]. Journal of Lake Sciences,2018,30(2):279-295.
    [24]李传华,赵军,师银芳,等.基于变异系数的植被NPP人为影响定量研究——以石羊河流域为例[J].生态学报,2016,36(13):4034-4044.Li C H,Zhao J,Shi Y F,et al. The impact of human activities on net primary productivity based on the coefficient of variation:A case study of the Shiyang River Basin[J]. Acta Ecologica Sinica,2016,36(13):4034-4044.
    [25]于文丽,蒲英霞,陈刚,等.基于空间自相关的中国省际人口迁移模式与机制分析[J].地理与地理信息科学,2012,28(2):44-49.Yu W L,Pu Y X,Chen G,et al. Spatial analysis of the patterns and mechanism of inter-provincial migration flows in China[J].Geography and Geo-Information Science,2012,28(2):44-49.
    [26]金颖薇,朱广伟,许海,等.太湖水华期营养盐空间分异特征与赋存量估算[J].环境科学,2015,36(3):936-945.Jin Y W,Zhu G W,Xu H,et al. Spatial distribution pattern and stock estimation of nutrients during bloom season in Lake Taihu[J]. Environmental Science,2015,36(3):936-945.
    [27] Collins S M,Oliver S K,Lapierre J F,et al. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales[J]. Ecological Applications,2017,27(5):1529-1540.
    [28] Berthold M,Karsten U,Von Weber M,et al. Phytoplankton can bypass nutrient reductions in eutrophic coastal water bodies[J].Ambio,2018,47(S1):146-158.
    [29] Robertson B P,Savage C. Mud-entrained macroalgae utilise porewater and overlying water column nutrients to grow in a eutrophic intertidal estuary[J]. Biogeochemistry,2018,139(1):53-68.
    [30]周楠,赵卫红,苗辉.獐子岛附近海域溶解有机物的荧光特征[J].光谱学与光谱分析,2012,32(4):1007-1011.Zhou N,Zhao W H,Miao H. Fluorescence characteristics of dissolved organic matter in the sea nearby Zhangzi Island[J].Spectroscopy and Spectral Analysis,2012,32(4):1007-1011.
    [31]曹阳,滕彦国,王威,等.金积水源地地下水体重金属空间分布及来源[J].环境科学与技术,2013,36(11):163-167,198.Cao Y,Teng Y G,Wang W,et al. Investigation of heavy metals in Jinji Groundwater Source of Wuzhong City:spatial distribution and source apportionment[J]. Environmental Science&Technology,2013,36(11):163-167,198.
    [32]叶宏萌,袁旭音,葛敏霞,等.太湖北部流域水化学特征及其控制因素[J].生态环境学报,2010,19(1):23-27.Ye H M, Yuan X Y, Ge M X, et al. Water chemistry characteristics and controlling factors in the northern rivers in the Taihu Basin[J]. Ecology and Environmental Sciences,2010,19(1):23-27.
    [33]张润宇,王立英,吴丰昌,等.太湖春季水体磷形态的空间分布[A].见:第十三届世界湖泊大会论文集[C].武汉:中国环境科学学会,中国环境保护产业协会,2009.
    [34]李成高.环境理化因子对集约化养殖海域沉积物中亚硝态氮积累和释放的影响[D].青岛:中国海洋大学,2007.Li C G. Influence of physical and chemical factors on nitrite nitrogen accumulation and release in sediments of the intensive mariculture area[D]. Qingdao:Ocean University of China,2007.
    [35]孔繁翔,马荣华,高俊峰,等.太湖蓝藻水华的预防、预测和预警的理论与实践[J].湖泊科学,2009,21(3):314-328.Kong F X,Ma R H,Gao J F,et al. The theory and practice of prevention,forecast and warning on cyanobacteria bloom in Lake Taihu[J]. Journal of Lake Sciences,2009,21(3):314-328.
    [36]蔡琨,秦春燕,李继影,等.基于浮游植物生物完整性指数的湖泊生态系统评价——以2012年冬季太湖为例[J].生态学报,2016,36(5):1431-1441.Cai K, Qin C Y, Li J Y, et al. Preliminary study on phytoplanktonic index of biotic integrity(P-IBI)assessment for lake ecosystem health:a case of Taihu Lake in Winter,2012[J]. Acta Ecologica Sinica,2016,36(5):1431-1441.
    [37]艾鹰.微囊藻在太湖越冬及复苏的时空格局[D].北京:中国科学院大学,2014.
    [38] Tong Y D,Qiao Z,Wang X J,et al. Human activities altered water N:P ratios in the populated regions of China[J].Chemosphere,2018,210:1070-1081.
    [39]张佳磊,郑丙辉,刘德富,等.三峡水库大宁河支流浮游植物演变过程及其驱动因素[J].环境科学,2017,38(2):535-546.Zhang J L,Zheng B H,Liu D F,et al. Succession pattern of phytoplankton of Daning River in the Three Gorges Reservoir and its driving factors[J]. Environmental Science,2017,38(2):535-546.
    [40] Riley J P,Skirrow G. Chemical oceanography(2nd ed.)[M].Beijing:Academic Press,1982.
    [41]张云,王圣瑞,段昌群,等.滇池沉水植物生长过程对间隙水氮、磷时空变化的影响[J].湖泊科学,2018,30(2):314-325.Zhang Y, Wang S R, Duan C Q, et al. Spatial-temporal variations of nitrogen and phosphorus forms in sediment porewater as affected by submerged plant in Lake Dianchi[J]. Journal of Lake Sciences,2018,30(2):314-325.
    [42]周笑白,张宁红,张咏,等.太湖蓝藻的时空变化规律及治理方法[J].生态环境学报,2013,22(12):1930-1935.Zhou X B,Zhang N H,Zhang Y,et al. The temporal and spatial distribution pattern of cyanobacteria and its control method in Taihu Lake[J]. Ecology and Environmental Sciences,2013,22(12):1930-1935.
    [43]赵林林,朱广伟,顾钊,等.太湖水体氮、磷赋存量的逐月变化规律研究[J].水文,2013,33(5):28-33,45.Zhao L L,Zhu G W,Gu Z,et al. Monthly variation of nitrogen and phosphorus volume in Taihu Lake,China[J]. Journal of China Hydrology,2013,33(5):28-33,45.
    [44] Zhang Y,Song C L,Ji L,et al. Cause and effect of N/P ratio decline with eutrophication aggravation in shallow lakes[J].Science of the Total Environment,2018,627:1294-1302.
    [45] Chao J Y,Zhang Y M,Kong M,et al. Long-term moderate wind induced sediment resuspension meeting phosphorus demand of phytoplankton in the large shallow eutrophic Lake Taihu[J].PLo S One,2017,12(3):e173477.
    [46] Hudson J J,Taylor W D,Schindler D W. Planktonic nutrient regeneration and cycling efficiency in temperate lakes[J].Nature,1999,400(6745):659-661.
    [47]文威,孙学明,孙淑娟,等.海河底泥氮磷营养物静态释放模拟研究[J].农业环境科学学报,2008,27(1):295-300.Wen W,Sun X M,Sun S J,et al. Release of phosphorus and nitrogen from Haihe River sediments[J]. Journal of AgroEnvironment Science,2008,27(1):295-300.
    [48]张红爱.太湖地区典型水稻土土壤磷素径流流失及其吸持特征的研究[J].安徽农业科学,2008,36(18):7788-7792.Zhang H A. Research on P runoff loss in paddy soils in the Taihu Lake region and its sorption characters[J]. Journal of Anhui Agricultural Sciences,2008,36(18):7788-7792.
    [49]陈敏鹏,郭宝玲,刘昱,等.磷元素物质流分析研究进展[J].生态学报,2015,35(20):6891-6900.Chen M P,Guo B L,Liu Y,et al. Research on phosphorus flow analysis:Progress and perspectives[J]. Acta Ecologica Sinica,2015,35(20):6891-6900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700