用户名: 密码: 验证码:
双季稻品种根际特征与甲烷排放差异及其关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Differences and Relationship Between Rhizosphere Characteristics and Methane Emissions of Double-cropping Rice Variety
  • 作者:肖志祥 ; 傅志强 ; 徐华勤 ; 苏姗 ; 郭昱 ; 张浪 ; 唐剑武
  • 英文作者:XIAO Zhi-xiang;FU Zhi-qiang;XU Hua-qin;SU Shan;GUO Yu;ZHANG Lang;TANG Jian-wu;Crop Cultivation Scientific Observation and Experiment Station in Central China,College of Agronomy,Hunan Agricultural University;
  • 关键词:双季稻品种 ; 甲烷排放 ; 温室效应 ; 根系特征
  • 英文关键词:double-cropping rice variety;;methane emissions;;greenhouse effect;;root characteristics
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:湖南农业大学农学院华中地区作物栽培科学观测实验站;
  • 出版日期:2018-09-12 13:26
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(41571293);; 国家科技支撑计划项目(2013BAD07B11-02);; 湖南省重点研发计划项目(2016NK2125)
  • 语种:中文;
  • 页:HJKZ201902050
  • 页数:11
  • CN:02
  • ISSN:11-1895/X
  • 分类号:394-404
摘要
为探讨不同水稻品种间甲烷排放差异形成的机制,选取早晚稻各6个品种为供试材料进行大田试验,采用静态暗箱-气相色谱法测定CH4气体.结果表明,早晚稻甲烷排放通量品种间差异显著,全生育甲烷排放通量均值湘早籼24号最高,株两优819最低,相差34. 6%;晚稻种,T优15最高,资优299最低,相差33. 9%.不同双季稻品种间甲烷排放量、单位产量温室效应差异显著.早稻品种的CH4累计排放量介于198. 3~303. 44 kg·hm-2之间,排放量最低是株两优819;单位产量温室效应介于0. 67~1. 40 kg·kg~(-1)之间,陆两优996最低.晚稻品种的CH4累计排放量明显高于早稻,介于291. 93~388. 28kg·hm-2之间,资优299最低;单位产量温室效应介于0. 94~1. 68 kg·kg~(-1)之间,Y两优1号最低.稻田甲烷排放与水稻产量、根冠比、根系孔隙度、土壤溶液Eh值、甲烷浓度、可溶性碳浓度及铵态氮浓度的相关性均达到显著或极显著水平.双季稻品种甲烷排放与水稻根冠比及根孔隙度关系密切,降低早稻品种根系孔隙度或者根冠比可减排甲烷,而晚稻品种则与早稻相反;根际土壤溶液碳氮浓度的降低和Eh值的提高也可减少甲烷的排放.
        Six field varieties of early rice and late rice were selected as test materials for field experiments to explore the difference in CH4 emissions among different rice varieties,and Static Obscura-Gas Chromatography was used to determine the CH4 gas. The results demonstrated a significant difference in the CH4 emissions flux between early and late rice varieties. The average yield of total fertility CH4 emissions was highest in Xiangzaoxian 24 and lowest in Zhuliangyou 819,with a difference of 34. 6%. Of the late rice varieties,Tyou 15 was the highest and the Ziyou 299 was the lowest,with a difference of 33. 9%. Differences in CH4 emissions and the greenhouse effect of unit yields between different double cropping rice varieties differed significantly. The cumulative CH4 emissions from early rice varieties ranged from 198. 3-303. 44 kg·hm-2,and the lowest emissions were from Zhuliangyou 819. The greenhouse effect per yield ranged from 0. 67 to 1. 40 kg·kg~(-1),and Luliangyou 996 had the lowest emission value. The late-season rice varieties exhibited significantly higher cumulative CH4 emissions compared to early rice,ranging from 291. 93 to 388. 28 kg·hm-2,and Ziyou 299 had the lowest emission value. The greenhouse effect of per yields rice varieties,while the late rice varieties were contrary to early rice. Reducing carbon and nitrogen concentrations in the rhizosphere and increasing Eh values could reduce CH4 emissions.
引文
[1] Lai R. Soil carbon sequestration to mitigate climate change[J].Geoderma,2004,123(1-2):1-22.
    [2] Mosier A R,Delgado J A,Keller M. Methane and nitrous oxide fluxes in an acid oxisol in western Puerto Rico:effects of tillage,liming and fertilization[J]. Soil Biology and Biochemistry,1998,30(14):2087-2098.
    [3] Baggs E M,Blum H. CH4oxidation and emissions of CH4and N2O from Lolium perenne swards under elevated atmospheric CO2[J]. Soil Biology and Biochemistry,2004,36(4):713-723.
    [4] Ghosh S,Majumdar D,Jain M C. Methane and nitrous oxide emissions from an irrigated rice of North India[J].Chemosphere,2003,51(3):181-195.
    [5] Rodhe H. A comparison of the contribution of various gases to the greenhouse effect[J]. Science,1990,248(4960):1217-1219.
    [6] FAO. Statistical databases,Food and Agriculture Organization of the United Nations[EB/OL]. 2014. http://faostat. fao. org/.
    [7]国家发展和改革委员会应对国家气候变化司.中华人民共和国气候变化第二次国家信息通报[M].北京:中国经济出版社,2013. 28-30.
    [8]王平,黄耀,张稳. 1955-2005年中国稻田甲烷排放估算[J].气候变化研究进展,2009,5(5):291-297.Wang P,Huang Y,Zhang W. Estimation of methane emissions from rice fields in China from 1955 to 2005[J]. Climate Change Research,2009,5(5):291-297.
    [9]王增远,徐雨昌,李震,等.水稻品种对稻田甲烷排放的影响[J].作物学报,1999,25(4):441-446.Wang Z Y,Xu Y C,Li Z,et al. Effects of rice varieties on methane emission from paddy fields[J]. Acta Agronomica Sinica,1999,25(4):441-446.
    [10]黄耀.中国的温室气体排放、减排措施与对策[J].第四纪研究,2006,26(5):722-732.Huang Y. Emissions of greenhouse gases in China and its reduction strategy[J]. Quaternary Research,2006,26(5):722-732.
    [11] Gogoi N,Baruah K K,Gupta P K. Selection of rice genotypes for lower methane emission[J]. Agronomy for Sustainable Development,2008,28(2):181-186.
    [12] Bhullar G S,Iravani M,Edwards P J,et al. Methane transport and emissions from soil as affected by water table and vascular plants[J]. BMC Ecology,2013,13:32.
    [13] Cheung F. Yield:The search for the rice of the future[J].Nature,2014,514(7524):S60-S61.
    [14] Zhang Y,Jiang Y,Li Z J,et al. Aboveground morphological traits do not predict rice variety effects on CH4emissions[J].Agriculture,Ecosystems&Environment,2015,208:86-93.
    [15] Conrad R,Klose M,Lu Y H,et al. Methanogenic pathway and archaeal communities in three different anoxic soils amended with rice straw and maize straw[J]. Frontiers in Microbiology,2012,3:4.
    [16]孙会峰,周胜,陈桂发,等.水稻品种对稻田CH4和N2O排放的影响[J].农业环境科学学报,2015,34(8):1595-1602.Sun H F,Zhou S,Chen G F,et al. Effects of rice cultivars on CH4and N2O emissions from rice fields[J]. Journal of AgroEnvironment Science,2015,34(8):1595-1602.
    [17] Ma K,Qiu Q F,Lu Y H. Microbial mechanism for rice variety control on methane emission from rice field soil[J]. Global Change Biology,2010,16(11):3085-3095.
    [18] Zhao B,Zhang J,Lv X,et al. Methane oxidation enhancement of rice roots with stimulus to its shoots[J]. Plant,Soil and Environment,2013,59(4):143-149.
    [19]蔡祖聪,徐华,马静.稻田生态系统CH4和N2O排放[M].合肥:中国科学技术大学出版社,2009.
    [20]焦燕,黄耀,宗良纲,等.土壤理化特性对稻田CH4排放的影响[J].环境科学,2002,23(5):1-7.Jiao Y,Huang Y,Zong L G,et al. Methane emission from rice paddy soils as influenced by soil physico chemical properties[J].Environmental Science,2002,23(5):1-7.
    [21] Wang Z P,Delaune R D,Patrick W H Jr,et al. Soil Redox and pH effects on methane production in a flooded rice soil[J]. Soil Science Society of America Journal,1993,57(2):382-385.
    [22] Liebig M A,Tanaka D L,Gross J R. Fallow effects on soil carbon and greenhouse gas flux in central North Dakota[J]. Soil Science Society of America Journal,2010,74(2):358-365.
    [23]王聪,沈健林,郑亮,等.猪粪化肥配施对双季稻田CH4和N2O排放及其全球增温潜势的影响[J].环境科学,2014,35(8):3120-3127.Wang C, Shen J L, Zheng L, et al. Effects of combined applications of pig manure and chemical fertilizers on CH4and N2O emissions and their global warming potentials in paddy fields with double-rice cropping[J]. Environmental Science,2014,35(8):3120-3127.
    [24] Bhatia A,Pathak H,Jain N,et al. Global warming potential of manure amended soils under rice-wheat system in the IndoGangetic plains[J]. Atmospheric Environment,2005,39(37):6976-6984.
    [25] Li X L,Yuan W P,Xu H,et al. Effect of timing and duration of midseason aeration on CH4and N2O emissions from irrigated lowland rice paddies in China[J]. Nutrient Cycling in Agroecosystems,2011,91(3):293-305.
    [26]魏海苹,孙文娟,黄耀.中国稻田甲烷排放及其影响因素的统计分析[J].中国农业科学,2012,45(17):3531-3540.Wei H P,Sun W J,Huang Y,et al. Statistical analysis of methane emission from rice fields in China and the driving factors[J]. Science Agricultura Sinica,2012,45(17):3531-3540.
    [27]傅志强,黄璜,何保良,等.水稻植株通气系统与稻田CH4排放相关性研究[J].作物学报,2007,33(9):1458-1467.Fu Z Q,Huang H,He B L,et al. Correlation between rice plant aeration system and methane emission from paddy field[J]. Acta Agronomica Sinica,2007,33(9):1458-1467.
    [28]傅志强,黄璜,朱华武,等.水稻CH4和N2O的排放及其与植株特性的相关性[J].湖南农业大学学报(自然科学版),2011,37(4):356-360.Fu Z Q,Huang H,Zhu H W,et al. Relativity between CH4and N2O emission and rice plant characteristics[J]. Journal of Hunan Agricultural University(Natural Sciences),2011,37(4):356-360.
    [29] Su J,Hu C,Yan X,et al. Expression of barley SUSIBA2transcription factor yields high-starch low-methane rice[J].Nature,2015,523(7562):602-606.
    [30] Ding A,Wills C R,Sass R L,et al. Methane emissions from rice fields:effect of plant height among several rice cultivars[J].Global Biogeochemical Cycles,1999,13(4):1045-1052.
    [31] Aulakh M S,Bodenbender J,Wassmann R,et al. Methane transport capacity of rice plants.Ⅱ. Variations among different rice cultivars and relationship with morphological characteristics[J]. Nutrient Cycling in Agroecosystems,2000,58(1-3):367-375.
    [32] Aulakh M S,Wassmann R,Rennenberg H. Methane transport capacity of twenty-two rice cultivars from five major Asian ricegrowing countries[J]. Agriculture,Ecosystems&Environment,2002,91(1-3):59-71.
    [33] Lee H J,Sang Y K,Kim P J,et al. Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem[J]. FEMS Microbiology Ecology,2014,88(1):195-212.
    [34] Conrad R,Klose M,Yuan Q,et al. Stable carbon isotope fractionation,carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter[J]. Soil Biology and Biochemistry,2012,49:193-199.
    [35] Ye R Z,Doane T,Morris J,et al. The effect of rice straw on the priming of soil organic matter and methane production in peat soils[J]. Soil Biology and Biochemistry 2015,81:98-107.
    [36] Dorodnikov M,Knorr K H,Kuzyakov Y,et al. Plant-mediated CH4transport and contribution of photosynthates to methanogenesis at a boreal mire:a14C pulse-labeling study[J].Biogeosciences,2011,8(8):2365-2375.
    [37]傅志强,龙攀,刘依依,等.水氮组合模式对双季稻甲烷和氧化亚氮排放的影响[J].环境科学,2015,36(9):3365-3372.Fu Z Q, Long P, Liu Y Y, et al. Effects of water and nitrogenous fertilizer coupling on CH4and N2O emission from double-season rice paddy field[J]. Environmental Science,2015,36(9):3365-3372.
    [38] Zu Q H,Zhong L H,Deng Y,et al. Geographical distribution of methanogenic Archaea in nine representative paddy soils in China[J]. Frontiers in Microbiology,2016,7:1447.
    [39] Wang W Q, Lai D Y F, Sardans J, et al. Rice straw incorporation affects global warming potential differently in early vs. late cropping seasons in Southeastern China[J]. Filed Crops Research. 2015,181:42-51.
    [40] Wang W Q,Min Q W,Sardans J,et al. Organic cultivation of jasmine and tea increases carbon sequestration by changing plant and soil stoichiometry[J]. Agronomy Journal,2016,108(4):1636-1648.
    [41] Ge T D,Liu C,Yuan H Z,et al. Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen[J]. Plant and Soil,2015,392(1-2):17-25.
    [42] Lai D Y F,Roulet N T,Moore T R. The spatial and temporal relationships between CO2and CH4exchange in a temperate ombrotrophic bog[J]. Atmospheric Environment,2014,89:249-259.
    [43] Shrestha M,Shrestha P M,Frenzel P,et al. Effect of nitrogen fertilization on methane oxidation, abundance, community structure,and gene expression of methanotrophs in the rice rhizosphere[J]. The ISME Journal,2010,4(12):1545-1556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700