用户名: 密码: 验证码:
变温条件下颗粒煤吸附甲烷微生物降解能力实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Investigation of Degradation Efficiency on Coal Particles Adsorbing Methane Microbe at Different Temperature
  • 作者:张小菊 ; 彭展进 ; 黄慧艳
  • 英文作者:ZHANG Xiaoju;PENG Zhanjin;HUANG Huiyan;College of Urban Construction,Wuchang Shouyi University;
  • 关键词:甲烷氧化菌 ; 颗粒煤 ; 甲烷 ; 生物降解 ; 低氧环境 ; 温度
  • 英文关键词:methanotroph;;coal particle;;methane;;biodegradable;;low oxygen concentration;;temperature
  • 中文刊名:ENER
  • 英文刊名:Mining Safety & Environmental Protection
  • 机构:武昌首义学院城市建设学院;
  • 出版日期:2019-02-15
  • 出版单位:矿业安全与环保
  • 年:2019
  • 期:v.46;No.243
  • 基金:湖北省质量工程项目(201542);; 湖北高校省级教学研究项目(2016460)
  • 语种:中文;
  • 页:ENER201901003
  • 页数:4
  • CN:01
  • ISSN:50-1062/TD
  • 分类号:14-17
摘要
从煤矿回风巷土壤中分离出1株TypeⅠ型Methylomarinum属甲烷氧化菌,利用微生物降解颗粒煤吸附甲烷实验装置,研究了该菌在高瓦斯压力、低氧含量静态环境中甲烷降解率随降解时间增加的变化规律,以及环境温度变化对其甲烷降解效能的影响。实验结果表明:甲烷降解率随着降解时间的增加而增大,表现为前期快速增大而后缓慢增大,最终趋于一定值,并满足关系式y=ax2+bx+c;不同氧气浓度环境下由于甲烷氧化菌代谢机制的不同,甲烷降解率呈现较大差异;在温度15~40℃内,甲烷降解体积随着温度的升高先增大而后迅速减小,符合关系式y=ax3+bx2+cx+d。
        A methane-oxidizing bacteria belong to Type ⅠMethylomarinum was isolated from return air roadway of coal mine soil,based on the experimental equipment of methane adsorption by microorganism degradation granular coal,the variation of methane degradation rate with degradation time in the static environment with high gas pressure and low oxygen content was studied,and the effect of ambient temperature on the degradation efficiency of methane was also studied. The experimental results show that the degradation rate of methane increases with the increase of degradation time,it increases rapidly in the early stage and then slowly,and finally reaches a certain value,it coincides with the equation of y = ax2+bx+c; methane degradation rate shows obvious difference because methane oxidizing bacteria has different metabolic mechanism under different oxygen concentrations; In the range of 15 ℃ to 40 ℃,the methane degradation volume increases at first and then decreases rapidly with the increase of temperature,and coincides with the equation of y = ax3+bx2+cx+d.
引文
[1]袁亮,薛生.煤层瓦斯含量法确定保护层开采消突范围的技术及应用[J].煤炭学报,2014,39(9):1786-1791.
    [2]李树刚,马瑞峰,许满贵,等.煤层水力压裂增透影响半径试验研究[J].矿业安全与环保,2014,41(3):9-11.
    [3]李豪君,王兆丰,陈喜恩,等.液态CO2相变致裂技术在布孔参数优化中的应用[J].煤田地质与勘探,2017,45(4):31-37.
    [4]马若潺,魏晓梦,何若.低氧生境中好氧甲烷氧化菌的缺氧耐受机理及种群结构研究进展[J].应用生态学报,2017,28(6):2047-2054.
    [5]潘思东.模拟原煤赋存环境下甲烷氧化菌降解煤吸附甲烷实验[J].矿业安全与环保,2018,45(2):26-29.
    [6]闵航,谭玉龙,吴伟祥,等.一个厌氧甲烷氧化菌菌株的分离、纯化和特征研究[J].浙江大学学报(农业与生命科学版),2002,28(6):619-624.
    [7]刘晓宁,李珍,林国秀,等.一株甲烷氧化菌的分离鉴定与特性[J].微生物学通报,2010,37(9):1265-1271.
    [8]陈东科,王璐,金龙哲,等.微生物降解煤矿瓦斯的研究[J].煤炭学报,2006,31(5):607-609.
    [9]张瑞林,蔡传辉,王振江.高压稀氧环境下微生物降解甲烷的实验研究[J].中国矿业,2014,23(11):132-135.
    [10]田坤云,张瑞林,崔学锋.好氧型甲烷氧化菌对风流中甲烷的降解实验[J].矿业安全与环保,2016,43(6):5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700