用户名: 密码: 验证码:
Al_9Fe_(0.7)Ni_(1.3)颗粒对固溶态喷射沉积Al-Zn-Mg-Cu-Ni合金组织和性能的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Al_9Fe_(0.7)Ni_(1.3) Particle on the Microstructure and Mechanical Properties of Solution-treated Al-Zn-Mg-Cu-Ni Alloys Prepared by Spray Deposition
  • 作者:刘飞 ; 白朴存 ; 侯小虎 ; 崔晓明 ; 郭瑞星
  • 英文作者:Liu Fei;Bai Pucun;Hou Xiaohu;Cui Xiaoming;Guo Ruixing;Inner Mongolia University of Technology;
  • 关键词:Al_9Fe_(0.7)Ni_(1.3) ; HRTEM ; Al-Zn-Mg-Cu合金 ; 力学性能
  • 英文关键词:Al_9Fe_(0.7)Ni_(1.3);;HRTEM;;Al-Zn-Mg-Cu alloy;;mechanical properties
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:内蒙古工业大学;
  • 出版日期:2019-02-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.391
  • 基金:National Natural Science Foundation of China(11362014,11672140);; Research Program Supported by Inner Mongolia University of Technology(X201607);; Graduate Research Innovation Project of Inner Mongolia Autonomous Region,China(B20171012808)
  • 语种:英文;
  • 页:COSE201902012
  • 页数:6
  • CN:02
  • ISSN:61-1154/TG
  • 分类号:88-93
摘要
利用喷射沉积技术制备含Ni的Al-Zn-Mg-Cu合金。利用扫描电镜和电子背散射衍射、透射电镜以及拉伸测试研究了Al_9Fe_(0.7)Ni_(1.3)颗粒对合金固溶处理后组织和性能的影响。结果发现:合金中的Ni元素以亚微米球状Al_9Fe_(0.7)Ni_(1.3)化合物的形式存在,Al_9Fe_(0.7)Ni_(1.3)颗粒主要在晶界附近分布,说明该颗粒在固溶过程中具有有力的抑制再结晶作用。固溶处理后,合金的抗拉强度为603 MPa,断裂延伸率为11.79%,主要断裂方式为穿晶延性断裂。实验结果表明,亚微米球状Al_9Fe_(0.7)Ni_(1.3)化合物对合金性能有重要影响,可以产生细晶强化和Orowan强化,是合金发生穿晶延性断裂的主要原因。
        An Al-Zn-Mg-Cu alloy with Ni added as an alloying element was synthesized via spray deposition. The effects of the Al_9Fe_(0.7)Ni_(1.3) particles on the microstructure and mechanical properties of the alloy after a solution treatment were investigated by scanning electron microscopy(SEM) in conjunction with electron backscatter diffraction(EBSD), transmission electron microscopy(TEM) and tensile tests. We find that the element Ni is present in the alloy in the form of spherical submicrometer Al_9Fe_(0.7)Ni_(1.3) compound particles. The Al_9Fe_(0.7)Ni_(1.3) compound particles are mainly distributed near the grain boundaries, revealing a powerful recrystallization inhibition effect during the solution treatment. After the solid solution treatment, the alloy exhibits an ultimate tensile strength of 603 MPa and an elongation of 11.79%, and transgranular ductile fracture is identified as the main fracture mechanism. The results show that the presence of the spherical submicrometer Al_9Fe_(0.7)Ni_(1.3) compound particles plays a key role on the mechanical properties of the alloy, leading to grain refinement strengthening and Orowan strengthening, which is the main reason for the occurrence of transgranular ductile fracture.
引文
1 Yang C W,Chang Y H,Lui T S et al.Materials&Design[J],2012,40:163
    2 Tiwary C S,Kashyap S,Kim D H et al.Materials Science and Engineering A[J],2015,639:359
    3 B?yük U,Engin S,Mara?l?N.Materials Characterization[J],2011,62(9):844
    4 Casari D,Ludwig T H,Merlin M et al.Materials Science and Engineering A[J],2014,610:414
    5 Di Giovanni M T,Cerri E,Casari D et al.Metallurgical and Materials Transactions A[J],2016,47(5):2049
    6 Kundin J,Pogorelov E,Emmerich H.Acta Materialia[J],2015,83:448
    7 Naeem H T,Mohammed K S,Ahmad K R et al.Digest Journal of Nanomaterials and Biostructures[J],2014,9:1309
    8 Warmuzek M.Journal of Alloys and Compounds[J],2014,604:245
    9 Farkoosh A R,Pekguleryuz M.Materials Science and Engineering A[J],2013,582:248
    10 Elgallad E M,Shen P,Zhang Z et al.Materials&Design[J],2014,61:133
    11 Silva B L,Dessi J G,Gomes L F et al.Journal of Alloys and Compounds[J],2017,691:952
    12 Wang F,Xiong B Q,Zhang Y A et al.Materials Science and Engineering A[J],2009,518(1-2):144
    13 Wang F,Xiong B Q,Zhang Y A et al.Materials&Design[J],2007,28(4):1154
    14 Wang F,Xiong B Q,Zhang Y A et al.Journal of Alloys and Compounds[J],2009,487(1-2):445
    15 Yang Y,Yu K L,Li Y G et al.Materials&Design[J],2012,33:220
    16 Chumak I,Richter K W,Ipser H.Intermetallics[J],2007,15(11):1416
    17 M?Ller H,Stumpf W E,Pistorius P C.Transactions of Nonferrous Metals Society of China[J],2010,20(S3):842
    18 Mikhaylovskaya A V,Yakovtseva O A,Cheverikin V V et al.Materials Science and Engineering A[J],2016,659:225
    19 Khaidar M,Allibert C H,Driole J.Zeitschrift fur Metall-kunde[J],1982,73(7):433
    20 Liu B,Lei Q,Xie L Q et al.Materials&Design[J],2016,96:217
    21 Li G A,Zhang K,Lu Z et al.Rare Metal Materials and Engineering[J],2016,45(4):1040(in Chinese)
    22 Shen Y G,Bai P C,Hou X H et al.Rare Metal Materials and Engineering[J],2014,43(8):2032(in Chinese)
    23 Wen K,Xiong B Q,Zhang Y A et al.Rare Metal Materials and Engineering[J],2017,46(4):928
    24 Zhang J,Yang L,Zuo R L.Rare Metal Materials and Engineering[J],2015,44(4):956(in Chinese)
    25 Yu H C,Wang M P,Jia Y L et al.Journal of Alloys and Compounds[J],2014,601:120
    26 Peng G S,Chen K H,Chen S Y et al.Materials Science and Engineering A[J],2015,641:237
    27 Yang X B,Chen J H,Liu J Z et al.Materials Characterization[J],2013,83:79
    28 Bazarnik P,Huang Y,Lewandowska M et al.Materials Science and Engineering A[J],2015,626:9
    29 Ma K,Wen H M,Hu T et al.Acta Materialia[J],2014,62:141
    30 Zhou D S,Qiu F,Jiang Q C.Materials Science and Engineering A[J],2015,622:189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700