用户名: 密码: 验证码:
EDTA/纳米羟基磷灰石联合修复重金属污染土壤
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Joint remediation of heavy metal contaminated soil by EDTA and nanohydroxyapatite
  • 作者:王明新 ; 王彩彩 ; 张金永 ; 肖扬 ; 王世泽
  • 英文作者:WANG Mingxin;WANG Caicai;ZHANG Jinyong;XIAO Yang;WANG Shize;School of Environmental & Safety Engineering,Changzhou University;
  • 关键词:土壤修复 ; 重金属洗脱 ; 乙二胺四乙酸淋洗 ; 纳米羟基磷灰石钝化
  • 英文关键词:soil remediation;;heavy metal elution;;leaching with EGTA;;deactivation with nano-hydroxyapatite
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:常州大学环境与安全工程学院;
  • 出版日期:2019-02-26
  • 出版单位:环境工程学报
  • 年:2019
  • 期:v.13
  • 基金:国家自然科学基金资助项目(41772240);; 江苏省“六大人才高峰”培养对象项目(JNHB-003);; 江苏省高校“青蓝工程”项目
  • 语种:中文;
  • 页:HJJZ201902020
  • 页数:10
  • CN:02
  • ISSN:11-5591/X
  • 分类号:150-159
摘要
土壤淋洗可能导致残留重金属活化,采用淋洗/钝化联合修复重金属污染土壤可在一定程度上减少这一影响。研究了EDTA淋洗、纳米羟基磷灰石钝化及两者联合修复对土壤重金属洗脱率、TCLP浸出浓度、化学形态分布的影响,构建了涵盖土壤重金属残留量、生物有效性和生理毒性的环境风险评价方法,对淋洗、钝化及其联合修复进行了评价。结果发现,EDTA淋洗对Pb和Cu的洗脱效果较好,对Zn浸出浓度的削减率较高。当EDTA投加量为2 g·L~(-1)时,Zn的浸出浓度降低了70.40%。纳米羟基磷灰石对Pb和Zn具有较好的钝化效果,对Cu和Cd的钝化作用相对较弱。当纳米羟基磷灰石投加量为2%时,Pb浸出浓度削减率高达89.65%。淋洗/钝化联合修复大幅度降低了Pb和Cd的浸出浓度,降低了可还原态Cu残留量、可还原态和残渣态Cd残留量,以及弱酸提取态和可还原态Zn、Pb残留量。当EDTA和纳米羟基磷灰石投加量分别为1 g·L~(-1)和1%时,土壤重金属总环境风险削减率达到74.12%。EDTA对土壤中Cu和Cd的洗脱效果较好,后续钝化修复作用有限,Pb和Zn则可通过淋洗/钝化联合修复大幅度提高削减环境风险削减率。
        Soil leaching will cause the heavy metals activation, the leaching and deactivation combination could reduce this effect as it was used in the remediation of heavy metal contaminated soil. In this study, the effects of EDTA leaching, nano-hydroxyapatite deactivation and their combination in contaminated soil remediation on heavy metal elution rates, TCLP leaching concentration and chemical specification were studied.An environmental risk assessment method including residual concentration, bioavailability and physiological toxicity of heavy metals in soil was built to evaluate above remediation efficiencies. The results show that EDTA leaching treatments led to good elution rates for Pb and Cu, and high reduction rate for Zn leaching concentration. At 2 g · L-1 of EDTA dosage, the Zn leaching concentration decreased by 70.40%. Nanohydroxyapatite treatments have a good deactivation effect on Pb and Zn, while a relatively weak deactivation effect on Cu and Cd. At 2% nano-hydroxyapatite additon, the reduction rate of Pb leaching concentration reached 89.65%. Their joint treatments significantly reduced the leaching concentrations of Pb and Cd, and the surplus of the reducible Cu, reducible and residual Cd in soil, weak acid extractable and reducible Zn and Pb.At joint addition of 1 g·L~(-1) EDTA and 1% nano-hydroxyapatite, the reduction rate of total environmental risk of heavy metals in soil reached 74.12%. Although EDTA treatment could achieve good elution effects of Cu and Cd, its subsequent deactivation was limited. The joint leaching and deactivation treatment could significantly reduce the environmental risks of Pb and Zn.
引文
[1]尹雪,陈家军,吕策.洗涤剂组合两步洗涤修复重金属污染土壤研究[J].中国环境科学,2014,34(5):1222-1228.
    [2]陈寻峰,李小明,陈灿,等.砷污染土壤复合淋洗修复技术研究[J].环境科学,2016,37(3):1147-1155.
    [3]吴烈善,曾东梅,莫小荣,等.不同钝化剂对重金属污染土壤稳定化效应的研究[J].环境科学,2015,36(1):309-313.
    [4]吕浩阳,费杨,王爱勤,等.甘肃白银东大沟铅锌镉复合污染场地水泥固化稳定化原位修复[J].环境科学,2017,38(9):3897-3906.
    [5]马少云,祝方,商执峰.纳米零价铁铜双金属对铬污染土壤中Cr(Ⅵ)的还原动力学[J].环境科学,2016,37(5):1953-1959.
    [6]司友斌,王娟.异化铁还原对土壤中重金属形态转化及其有效性影响[J].环境科学,2015,36(9):3533-3542.
    [7]TSANG D C,HARTLEY N R.Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances[J].Environmental Science and Pollution Research International,2014,21(5):3987-3995.
    [8]BEIYUAN J,TSANG D C W,YONG S O,et al.Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site[J].Chemosphere,2016,159:426-432.
    [9]YOO J C,BEIYUAN J,WANG L,et al.A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils[J].Science of the Total Environment,2018,616-617:572-582.
    [10]BOLAN N,KUNHIKRISHNAN A,THANGARAJAN R,et al.Remediation of heavy metal(loid)s contaminated soils:To mobilize or to immobilize?[J].Journal of Hazardous Materials,2014,266(4):141-166.
    [11]FENG C,ZHANG S,LI L,et al.Feasibility of four wastes to remove heavy metals from contaminated soils[J].Journal of Environmental Management,2018,212:258-265.
    [12]ETTLER V,TOMá?OVáZ,KOMáREK M,et al.The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils:Implication for chemical stabilization of metals and metalloids[J].Journal of Hazardous Materials,2015,286:386-394.
    [13]LI S,ZHANG T,LI J,et al.Stabilization of Pb(II)accumulated in biomass through phosphate-pretreated pyrolysis at low temperatures[J].Journal of Hazardous Materials,2017,324:464-471.
    [14]PéREZ-ESTEBAN J,ESCOLáSTICO C,MASAGUER A,et al.Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils[J].Chemosphere,2014,103:164-171.
    [15]WU J,HUANG D,LIU X,et al.Remediation of As(III)and Cd(II)co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar[J].Journal of Hazardous Materials,2018,348:10-19.
    [16]CAO X,MA L,LIANG Y,et al.Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J].Environmental Science&Technology,2011,45(11):4884-4889.
    [17]YAN Y,QI F,BALAJI S,et al.Utilization of phosphorus loaded alkaline residue to immobilize lead in a shooting range soil[J].Chemosphere,2016,162:315-323.
    [18]王利,李永华,姬艳芳,等.羟基磷灰石和氯化钾联用修复铅锌矿区铅镉污染土壤的研究[J].环境科学,2011,32(7):2114-2118.
    [19]雷鸣,曾敏,廖柏寒,等.含磷物质对水稻吸收土壤砷的影响[J].环境科学,2014,35(8):3149-3154.
    [20]LIM H S,LEE J S,CHON H T,et al.Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea[J].Journal of Geochemical Exploration,2008,96(2/3):223-230.
    [21]SUNDARAY S K,NAYAK B B,LIN S,et al.Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments:A case study:Mahanadi basin,India[J].Journal of Hazardous Materials,2011,186(2/3):1837-1846.
    [22]荀志祥,王世泽,王明新,等.超声强化EDDS/EGTA淋洗修复重金属污染土壤[J].环境工程学报,2018,12(6):1766-1774.
    [23]RUBAN V,LóPEZSáNCHEZ J F,PARDO P,et al.Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment[J].Journal of Environmental Monitoring,1999,1(1):51-56.
    [24]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [25]邱琼瑶,周航,邓贵友,等.污染土壤中重金属的超声波强化EDTA洗脱及形态变化[J].环境科学学报,2014,34(9):2392-2397.
    [26]刘一洲,周航,杜文琪,等.超声波强化EDTA-Na2对土壤中Pb、Cd去除效果及形态变化的影响[J].环境工程学报,2017,11(5):3220-3226.
    [27]任贝,黄锦楼,苗明升.铅蓄电池厂污染土壤中重金属铅的清洗及形态变化分析[J].环境科学,2013,34(9):3697-3703.
    [28]邢金峰,仓龙,葛礼强,等.纳米羟基磷灰石钝化修复重金属污染土壤的稳定性研究[J].农业环境科学学报,2016,35(7):1271-1277.
    [29]崔红标,田超,周静,等.纳米羟基磷灰石对重金属污染土壤Cu/Cd形态分布及土壤酶活性影响[J].农业环境科学学报,2011,30(5):874-880.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700